

## DATABASE WORKLOAD CHARACTERIZATION WITH QUERY PLAN ENCODERS Debjyoti Paul, Jie Cao, Feifei Li, Vivek Srikumar deb, jcao, lifeifei, svivek @cs.utah.edu

### Introduction

Each database running a different workload, demands different resources and database configuration settings to achieve optimal performance, which prompts us to study workload features in detail.

We define a database workload as

$$W = \left\{ (p_1, \theta_1), (p_2, \theta_2), \dots, (p_m, \theta_m) \right\},$$

where  $p_i$  is the database query-plan, and  $\theta_i$  is a normalized weight of importance of  $p_i$  in workload W. For

## **Plan Encoders**



understanding workloads comprehensively it is necessary to perform feature engineering on query plans.

# **Key Contributions**

- → We propose query plan encoder models capturing structure and computational performance resource requisites as distributed feature representations.
- → We keep structure, and computational performance representation separate that enables downstream tasks to weigh each representation independently in their model.
- → We propose a taxonomy for operator types for learning diverse structure of query plans with self-attentive transformers.
- → We find performance of query plans are best characterized by encoders when plan task nodes are classified under scan, join, sort and aggregate; each having an encoder of its type.
- → Latency prediction and query classification downstream tasks performing well with our pretrained encoders suggests efficacy of our modeling strategy.

Fig 2. Structure Plan Encoder Modeling.

**Fig 3. Computational Performance Encoder Modeling.** 

## **Downstream Task Modeling**



- → In depth domain adaptation evaluation and ablation studies on various datasets signifies pretrained encoders adapts to new domain quickly, whereas encoders trained from scratch overfits.
- → In this work, we open-sourced an automated workload execution tool for cloud, a crowd-sourced plan dataset and revised two spatial benchmarks.



Fig 4. A bird-view architecture diagram, showing the role of plan encoders for downstream tasks. For example, latency prediction and query classification tasks.

| NDS                               | 100000                         |     | MEDIAN LATENCY |           |     |     |     |     |     |     |     |     | 1   |     |     |                 |      |      |      |
|-----------------------------------|--------------------------------|-----|----------------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----------------|------|------|------|
| TIME IN                           | 1000 1000                      | -   | 1              | 1         | 1   | 1   |     |     |     |     |     |     |     |     | •   |                 |      |      |      |
| S                                 | 100000                         | Q13 | Q17            | 43<br>(31 | Q35 | Q37 | Q40 | Q41 | Q42 | Q43 | Q44 | Q45 | Q54 | Q56 | Q61 | τ <sub>Ms</sub> | SM3  | 5M4  | SMS  |
| AE IN MILLISECOND:<br>(LOG SCALE) | 100000<br>10000<br>1000<br>100 |     |                |           |     |     |     |     |     |     |     |     |     | t   | t   | t               |      | t    |      |
| TIN                               | 10                             | Q13 | Q17<br>03      | Q31       | Q35 | Q37 | Q40 | Q41 | Q42 | Q43 | Q44 | Q45 | Q54 | Q56 | Q61 | - IWSO          | OSM3 | OSM4 | OSM5 |

Fig 5. Blue bars are median query latency, Orange lines are 5th-95th percentile range variations, and mean abs. error marked with black bar for spatial queries. A smaller black bar on a larger orange-line bar means better results.

Sparse-AE-Fixed

LSTM-PPSR-Fixed

Encoder-PPSR-Fixed

0.310 0.309

0.209

■ Sparse-AE-Fine

■ LSTM-PPSR-Fine

0.23

■ Encoder-PPSR-Fine

| $R(q) = \max\left(\frac{predicted(q)}{original(q)}, \frac{original(q)}{predicted(q)}\right)$ |                |                    |                |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|----------------|--------------------|----------------|--|--|--|--|--|--|
| Models                                                                                       | <i>R</i> ≤ 1.5 | $1.5 < R \leq 2.0$ | <i>R</i> > 2.0 |  |  |  |  |  |  |
| TAM <sup>[4]</sup>                                                                           | 51%            | 22%                | 27%            |  |  |  |  |  |  |
| SVF <sup>[5]</sup>                                                                           | 68%            | 15%                | 17%            |  |  |  |  |  |  |
| RBF <sup>[6]</sup>                                                                           | 85%            | 6%                 | 9%             |  |  |  |  |  |  |
| QPPNet <sup>[7]</sup>                                                                        | 89%            | 7%                 | 4%             |  |  |  |  |  |  |
| Plan Encoder                                                                                 | 91%            | 7%                 | 2%             |  |  |  |  |  |  |

Table 1. Percentage of queries from TPC-DS SF-100 testsetbinned based on R-factor for all the models in evaluations.Pretrained Plan Encoder performed well with 91% querieswithin 1.5R and only 2% queries above 2.0R.

| Models                 | Develop       | oment         | Test          |               |  |  |
|------------------------|---------------|---------------|---------------|---------------|--|--|
|                        | template      | cluster       | template      | cluster       |  |  |
| Structure only         | 0.2452        | 0.4670        | 0.1946        | 0.3847        |  |  |
| Performance only       | 0.1645        | 0.2973        | 0.0977        | 0.1769        |  |  |
| Both encoders          | <b>0.2783</b> | <b>0.5573</b> | <b>0.2518</b> | <b>0.4647</b> |  |  |
| Both encoders 10% data | 0.2000        | 0.4927        | 0.151         | 0.334         |  |  |
| Both encoders 30% data | 0.2555        | 0.5228        | 0.1843        | 0.3855        |  |  |

#### Results

Fig 1. An example of query plan tree with different types of task/operators nodes. It is to note that many properties are associated with each task node. This query plan is from TPC-H Query Template 5. **D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D**

Table 2. F1-scores of models for template and cluster queryclassification task on development and test dataset.



#### https://linkmix.co/11389156 Scan this QR Code for open-source resources.