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Abstract

Grid computing is a high performance computing environment to fulfill large-scale
computational demands. It can integrate computational as well as storage re-
sources from different networks and geographically dispersed organizations into a
high performance computational & storage platform. It is used to solve complex
computational-intensive problems, and also provide solution to storage-intensive ap-
plications with connected storage resources. Scheduling of user jobs properly on the
heterogeneous resources is an important task in a grid computing environment. The
main goal of scheduling is to maximize resource utilization, minimize waiting time
of jobs, reduce energy consumption, minimize cost to the user after satisfying con-
straints of jobs and resources. We can trade off between the required level of quality
of service, the deadline and the budget of user.In this thesis, we propose a Multi-
objective Evolution-based Dynamic Scheduler in Grid. Our scheduler have used
Multi-objective optimization technique using Genetic algorithm with pareto front
approach to find efficient schedules. Our avant-garde crossover, mutation and se-
lection operators offer exploration of search space vividly to avoid stagnation and
generate near optimal solution. We propose that our scheduler provides a better grip
on most features of grid from perspective of grid owner as well as user. Dynamic grid
environment has forced us to make it a real time dynamic scheduler. A job grouping
technique is proposed for grouping fine-grained jobs and for ease of computation.
Experimentation on different data sets and on various parameters revealed effective-
ness of multi-objective scheduling criteria and extraction of performance from grid

resource.
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Chapter 1

Introduction

Grid computing is used to solve large scale computational problems. Grid is a type
of parallel and distributed system that enables sharing, selection and aggregation
of geographically distributed resources dynamically at run time depending on their
availability, capability, performance, cost, user’s quality-of self-service requirement
[8]. The computational capabilities of grid resources can vary a lot, which are con-
nected through internet or private networks. Grid is beyond simple communication
between computers and ultimately aims to turn the global network of computer
into one vast computational resource. It is a virtual computing environment having
a collection of clusters, where a cluster means more than one node connected to
each other either within a cabinet or over a LAN giving users a single system image
[30]. A Grid has features of choosing a resource in some specific manner and submit
jobs on it. It has various important facilities such as scalability, high throughput,
and high performance. It facilitates large scale resource sharing resulting in high
speed job execution with less cost. Thus it can be said that a grid is a hardware
and software infrastructure that provides a dependable, consistent, pervasive, and
inexpensive access to high performance computing resources [13].

On the basis of functionality grid can be classified as:

e Computational Grid: A computational grid is a collection of distributed

computing resources, within or across locations that are combined to act as a
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Figure 1.1: Grid Architecture and components
unified computing resource.

e Data Grid: Data grid primarily deals with providing services and infrastruc-
ture for distributed data-intensive applications that need to access, transfer

and modify massive datasets stored in distributed storage resources [9].

1.1 Grid Architecture

Grid architecture [8] is described in layers, where each layer has some set of functions.
Upper layers are application and user centric and lower layers are hardware centric.
It consists of four layers i.e., application and portal layer, user-level middleware

layer, core middleware layer and fabric layer. Figure 1.1 shows the stack within a

grid architecture.

e Fabric layer: The lower layer of grid architecture consists of network com-
ponents, distributed resources, storage devices etc. Computational resources
represent multiple architectures such as clusters, supercomputers, servers, or-

dinary PCs and even PDAs.



e Core Middleware layer: The middleware layer is referred to as the “brains*
behind a computing grid. It provides tools for managing grid elements. It
offers services like remote process management, allocation of resources, storage

access, resource information registration/discovery, security, and Quality of

Service (QoS).

e User-level Middleware: This layer helps users to build applications for grid
with application development environment and various sets of programming

tools. It has access to API’s provided by the core middleware layer.

e Application layer: This is the layer users interact with. This includes appli-
cations in engineering, science, business, finance and more. This also provide
development toolkits to support the applications. Grid portals can also offer

scalable web-based application services.

1.2 Grid job scheduler

Grid performance can be improved in terms of job processing time by making sure
that all the resources available in the grid are utilized optimally using a good job
scheduling algorithm. Job scheduler exists in many conventional distributed environ-
ment systems but in grid there are several characteristics that make the scheduling
different and more challenging. Some of these characteristics are dynamic structure
of the computational grid, high heterogeneity of resources, jobs and interconnection
networks, existence of local policies on resources and local schedulers, the large scale
of the grid system and security [39].

The grid scheduler has to follow a series of steps [28] : (1) Collecting information of
jobs submitted to the grid, (2) Collecting available resource information, (3) Com-
putation of the mapping of jobs to selected resources, (4) Jobs allocation according
to the mapping, and (5) Monitoring of job completion. There are two types of

scheduling :

e Static scheduling: Jobs are statically assigned to resources before their ex-



ecution begins. The jobs can not be rescheduled or interrupted once its exe-

cution starts.

e Dynamic scheduling: Re-evaluation is allowed of already taken assignment
decisions during job execution is allowed[11] . It can trigger job migration or
interruption, based on dynamic information about the status of the system

and the workload.

The Job scheduling in Grid can be correlated with a classical problem, Flexible Job-
shop Scheduling problem(FJSP) [7] with dynamic changes of resources and their
availability. Besides these grid jobs need to be scheduled as soon as possible after
they are enqueued in the job queue, granting the scheduler only a few minutes of
time to find the scheduling strategy. FJSP consists of routing subproblem and the
scheduling subproblem [36]. Routing problem is to assign each job with a resource
among a set of resources and scheduling problem is to obtain a feasible and satis-
factory sequence of jobs within the resources.

Computationally, FJSP is as hard as JSP which is an NP Hard problem[15] . So
finding near optimal solution in polynomial time is our aim. The problem becomes
even more interesting when multiple objectives are there to be taken care of. Nearly
all job scheduling algorithms work on single objective like makespan (classical FJSP
minimize makespan only).

Finding near optimal solution for FJSP problem with more than one objective in
a time efficient way is a difficult task. Grid environment being dynamic in nature,
reallocation of jobs is quite evident in it.

Our approach of solving the above problem using Non-dominated sorting evolution-
ary algorithm for minimization of multiple objectives, is well enough to find near
optimal scheduling strategy in time. The running time complexity of algorithm is
O(GM N?) where G is the number of generations or iterations, M is the number of
objectives and N is the population size of the chromosomes or scheduling strategies

to run the algorithm.



1.3 Motivation

Grid aims at aggregating widely distributed resources and providing low cost com-
puting resources to users. Resources can be computers, storage space, network
resources connected through internet or private network with a middleware pro-
viding management capability. An Essential part of a Grid system is an efficient
scheduling system i.e. resource sharing problem in dynamic and multi-institutional
organizations [14]. Grid scheduling algorithms are inspected with different perspec-
tives, such as static vs. dynamic, application models, QoS constraints, objective
functions. Maximum utilization of grid resources is the most cogitated objective
in scheduling literatures. However other factors like maintaining QoS constraints,
cost effectiveness, energy efficient scheduling were either discussed separately or not
acknowledged. Fair amount of importance should be given to user satisfaction, time
and cost deadline of jobs. In 2007, Gartner estimated that the Information and
Communication Technology industry is liable for 2% of the global C'Oy emission
annually, which is equal to that from the aviation industry [29]. A study done at
the Lawrence Berkeley National Laboratory shows that the cooling efficiency (the
ratio of computing power to the cooling power) of data centers varies drastically
from a low value of 0.6 to a high value of 3.5 [16].

Above mentioned facets clearly show an urgency for a multi-objective grid scheduler,

dealing them on their gravity of importance.

1.4 Contribution of this thesis

We present a multi-objective Job scheduler based on an evolutionary algorithm. The
aim of this work is to give grid administrators a better scheduler, which will give
better grip on the trade off among cost, utilization, energy efficiency and QoS. The
scheduler can cope up with the dynamic behavior of resources, resource constraints
and predecessor job constraints. A job grouping mechanism is proffered for fine

grained jobs.



Pareto front approach is taken in multi-objective optimization. Non-dominating
sorting mechanism with avant-garde crossover and mutation operator enables the
scheduler to explore the search space minutely.

Objective functions can be classified into two categories: application-centric and
resource-centric. Negotiation and trade off between two types of objectives is neces-
sary. Our generalized multi-objective scheduler provides options to add and remove

objective functions.

1.5 Organization of the Thesis

The organization of the rest of the thesis and a brief outline of the chapters is
as follows. In chapter 2, some related works on job scheduling in grids and their
merits and demerits have been discussed. In chapter 3, Multi-objective Evolution
based Dynamic Job Scheduler in Grid has been presented. Here problem definition,
job-grouping strategy, problem formulation, MOJS module and algorithms are de-
scribed. In Chapter 4, implementation details and experimental results are given.

Chapter 5 sums up the work with conclusion and future work.



Chapter 2

Related Work

Job shop scheduling problem is at least 70 years old. Considerable effort to solve
it and find computational complexity has been found to be in 1960 [26]. This has
been proven to be an NP-complete problem in 1979 [21]. Many researcher have used
heuristic based solving approach to address the problem. Local Search [32], Tabu
search [1], simulated Annealing [40] [1] are single heuristic based approach.

In Tabu search, one solution s moves to another solution s’ located in the neigh-
borhood with a slight modification possible from s. Tabu search overcomes the
local optimality with a steepest descent/mildest ascent approach. However perfor-
mance of TS largely depends on the parameters and heuristic used in formulating
the problem. For multi-objective scheduling TS might not be sufficient.

In simulated annealing technique, each solution is mutated and if the mutant
spawned exceeds threshold it is rejected, and if less than or equal to the energy of
the parent, the difference of threshold and energy of mutant is added to Energy
Bank(EB). The threshold is changed when EB reaches a certain value and popula-
tion moved to new generation. Simulated annealing mutation/reheating is directly
proportional to the energy accumulated in EB. Simulated annealing in Multiobjec-
tive domain e.g. AMOSA [4] requires many parameters and domination factor to
find near optimal solutions, which are hard to established in grid scheduling.

There are also some hybrid approaches like Tabu search with Ant colony Op-

timization [31] [33], GA’s with Simulated annealing [42].Other predictive model



approaches for the problem are Particle Swarm optimization [25] [2], Fuzzy based
scheduling [22]. AI based scheduling algorithms like Max-min (Task with more com-
putation time has higher priority), Min-min (Task with less computation time has
higher priority), Suffrage (Task with higher sufferage value is given higher priority,
its value is determined as the difference of computational time between best and
second best resources on which job can be allocated)[19]. All the above work have
focused on single objective i.e. minimizing the makespan, which in turn maximizes
the utilization of resources. Resource constraint was also not taken into considera-
tion.

Job grouping based scheduling algorithm is used for fine-grained jobs & light-
weight jobs which increase the resource utilization [27] [3] . The later have considered
communication and bandwidth capabilities. However they have not taken care of
predecessor job completion constraint and dynamic behavior of resources in grid.

Genetic algorithms are a stochastic search method introduced in the 1970s in the
United States by John Holland [Holland 76] and in Germany by Ingo Rechenberg
[Rechenberg 73|. It is based on Darwin’s natural selection principle of evolution of
biological species. GA operate on a population of solution and apply heuristics such
as selection, crossover, and mutation to find better solutions [35].

EDSA is a GAs searching technique in which the crossover and mutation rates
are changed dynamically depending on the variances of the fitness values in each
generation [41] . The scheduling consider minimization of makespan. MOEA has
addressed the need for multi-objective minimization on computational grid, their
work was limited to one type of resource, two objectives i.e. makespan & flowtime,
and lacks predecessor job constraint [17].

In our work based on multi-objective evolutionary algorithm we have converted
resource scheduling problem in grid into resource-constrained project scheduling prob-
lem. We have incorporated dynamic scheduling mechanism, advanced crossover and
mutation operator & minimizing five objectives with pareto front technique. The

GA structure of Non-dominating Sorting Genetic Algorithm II proposed by K.Deb



et al. have helped us in creating the MOJS module [12].

GA based scheduler can act as a real time scheduler due to increase in compu-
tational capability of processors in last five years. We have proposed a job grouping
strategy for fine-grained jobs, so that it can deliver job schedule to dispatcher on
time.

A comparable work with matching constraints could not be found in literature, only
few publications deal with multi-objective scheduling [17] but their platform is dif-
ferent from ours. So in result section we experimented our scheduler and produced

result on the performance based on various parameters.



Chapter 3

Multi-objective Evolution based

Dynamic Job Scheduler in Grid

3.1 Problem Definition

Grid is a distributed decentralized heterogeneous computational system, later it has
also incorporated network storage system. User applications run on Grid varies from
lightweight to extensive computational /storage application with various constraints.
Job Scheduler is responsible to select best suitable machines in this grid for each job.
In large grid this should be done automatically. The scheduling system generates job
schedules for each machine in the grid by considering predefined static constraints
of jobs and machines and dynamic behavior of grid. Grid environment is highly
dynamic, resources can join and leave grid any time.

We define the problem in three sections as follows:

3.1.1 Flexible Job Shop Scheduling

The typical job-shop problem is formulated as a work order that consists of set of
n jobs, each of which contains m tasks. Each task has predecessors and requires
a certain type of resource, i.e. to be processed by any machine from a given set

[35]. Often many resources of a specific type are available, for example five milling

10
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machines and two lathes. Many tasks can be assigned to any one of the available
resources, but the resource must be of the suitable type. Similarly in the computing
environment some computational jobs have certain requirement specifications and
resource types to maintain their quality of service. Typical objectives for scheduling
include minimizing the makespan for the work order. Here we are also considering
energy consumption, time limit constraint, cost constraint and maximize utilization

of resources as objectives.

3.1.2 Dynamic Scheduler

Dynamic scheduler considers dynamic environment of grid where resources can
change its configuration and availability. In dynamic scheduling re-evaluation is
allowed for already taken assignment decisions during job execution [10]. It can
trigger job migration or interruption based on dynamic information about the sta-
tus of the system and the workload. When a resource leaves grid system the Grid
Information Service (GIS) can trigger the scheduler to reschedule the queued jobs
among the available resources. However care should be taken on scheduling the jobs
that are dependent on the rescheduled jobs. Similarly addition of new resources
will trigger reshuffling of the jobs for proper utilization of resources though less

complexities are involved in this case. Section 3.5 addresses this problem.

3.1.3 Gridlet

Grid job is often referred to as Gridlet. Jobs can be fine as well as coarse grained.
In grid computing, MI is the unit of job size. MI is million instructions or processing
requirements of a user job [24]. If the MI of a job is less than a fixed threshold M,
it is a fine-grained job. Similar approach i.e. Megabytes(MB) parameter is used for
storage intensive jobs. For fine-grained jobs, a job-grouping strategy is suggested

for faster execution of scheduler in section 3.6.
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3.2 Job Scheduling Model

The four basic building blocks of grid model are as follows
e Users
e Job scheduler
e Grid Information System (GIS)
e Resources

The user submits a list of jobs to the job pool where it gets a unique identification
number i.e. Job ID. If necessary job-grouping of very fine-grained jobs is accom-
plished by meta-scheduler before the scheduler process these jobs. The scheduler
obtains information of resources from Grid Information Service (GIS). GIS provides
information like resource availability, processing capability, energy consumption and
cost details. Based on the information, a scheduling strategy i.e. mapping of jobs

with execution start time and resources is created and send to dispatcher. The
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dispatcher dispatch jobs to their corresponding resources on time and collects the

results of completed jobs from the resources.

3.3 Formulation of problem

Here the problem is formulated with the notations described in scheduling literature
6], [5], [20]. Given are a set M = {M;, My, Ms,...M,,} of resources, a set J =
{J1, Ja, J3,...J;} of application jobs, and a set O of grid jobs. The n Grid Jobs of
application job J; are denoted by Oy, ..., O, a set W = {Wy, Wy, ... W, } denotes
normalized energy dissipation factor of resources. Table 3.1 gives a concise definition
of the notations have been used.

The following functions are used:

Table 3.1: Notation Symbol and their definitions

Notation | Definition
M; Resource with 1D i
J; Application job with ID ¢
Oi; jth Grid Job or task of Application job J;
W; Energy dissipation factor of Resource M;,

normalized with the max value from set W

Processing time of O;; mapped to resource R;;

c(0ij, Ri;) | Cost of O;; mapped to resource R;;
s(0yj) Start time of job O
6(0,'3') End time of JOb Oz’j
d;j Time limit for completion of O;;
Ci cost limit for O;;
tsum(M;) | Running time or Uptime of M;

e A precedence function

p:0xO — {TRUE,FALSFE} for the grid jobs.

e An assignment function p : O — P(P(M)) from grid jobs to resource sets.
P(M) is the power set of M. p;; is the set of all possible combinations of

resources from M, which together are able to perform the grid job O;;

e Resource mapping R : O — P(P(M)), R;; represent mapping of job O;; on a

machine M, R;; € f1;;
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e Function ¢ : OxP(M) — R, which gives for every grid job O;; the time needed

for processing on a resource set R;; € [

e Cost function ¢ : OxP(M) — R, ¢(O;;, R;;) is the cost of job O;; mapped on

resource I%;;.
e Function [ : M; — Oj;, which gives the last grid job executed on resource M,
e Function s: O;; — R, s(O;;) is the start time of grid job O;;.

e Function e : O;; — R, €(O;;) = s(O;;) + t(0;j, R;j) is the end time of grid job
O;; which is mapped on resource R;;.

e Function tsum : M; — R which gives the resource M; running time or Uptime.

Optimization is done by choosing suitable start times s(0;;) € R and resource

allocations R;; € f1;;. A solution is valid, if the following two restrictions are met:
1. All grid jobs are planned and resources are allocated exclusively:
VO;; : 35(0;;) € R, Ryj € g - VM; € Ry
M; is in [s(O;;); s(Oig) + t(0;;), R;j] exclusively allocated by O;;
2. Precedence relations are adhered to:
Vi,j # k : p(Oij, Oi) = s(Oi) > s(Oy5) + t(Oyj, Rij)

Exceeding the time limit and budget cost will affect QoS of grid jobs. A penalty

factor is imposed when jobs violates following constraints.
1. All grid jobs O;; have time limit d;; which must be adhered to:
VO;; : dij > s(0;5) + (044, Rij):
2. All grid jobs Oy have a cost limit ¢;; which must be adhered to:
VO, c;j > ¢(0;5, Rij)

This work focuses on achieving near-optimal scheduling strategy on fol-

lowing objective functions:
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1. Minimizing makespan, e(0;;) is the end time of grid job O

f1 = makespan = mazx{e(l(My)),e(l(Ms)),...,e(l(My))}

Makespan is the time at which all the resources becomes free.

2. Maximizing utilization of resources i.e. minimizing f,

fa = non — utilization = - 371" {e(I(Mj)) — tsum(M;)}

f2 is the average time period during which the the resources are idle.

3. Minimizing time limit penalty (minimizing number of jobs completing after

due date)

! - > e1(e(0y) — dij)

fs =~
g *

Vi,j
where ¢1(x) is a non-negative continuous exponential non-decreasing function,

if x > 0 else 0.

The grid jobs failed to complete within time limit contribute to the

penalty function f3. Minimizing time limit penalty is our aim.

4. Minimizing cost penalty

-

_j*n

> ea{c(Oy, Ryy) — ¢}

Vi,j

where @o(x) is a non-negative continuous linear non-decreasing function, if

x> 0 else 0.
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The grid jobs failed to meet the cost limit constraint contribute to the

penalty function f;. Minimizing cost limit penalty is our aim.

5. Minimizing Overall Energy consumption

f5 =Y tsum(M;) « W,

f5 gives energy consumption of all the resources.

3.4 MOJS Module

On submission of jobs and grid resource infromation to Multi-Objective Job Sched-
uler (MOJS) module, it outputs a near optimal scheduling strategy. Some of the

important building blocks of scheduler are discussed below.

3.4.1 Multi-objective optimization

Generalized multi-objective optimization problem can be described as:

Minimize y = f(z) = (f1(z), fa(z), ..., fu(2))
where z € V,y € RF
where, x is decision vector in search space V, y is the objective vector with £ > 1

objectives.

3.4.2 Chromosome model

A scheduling strategy or mapping of jobs on resources satisfying the constraints is

represented by chromosome. A chromosome stores parameters as follows
e Resource id corresponding to each job
e Start time of every job

e End time of every job



17

Predecessor job ID of each job

Five objective function values

Rank of chromosome, Rank is defined in section 3.4.3

Crowding distance, defined in section 3.4.4

Start time for execution of jobs is calculated according to heuristic rules (i) Schedule
grid job as early as its precedent job is completed (ii) Schedule grid jobs according

to shortest due date.

3.4.3 Non-Dominated Sorting

A chromosome a is said to be dominated by chromosome b iff Vi € {1,2,... k} :
fila) < fi(b) and Fi € {1,2,...,k} : fi(a) < fi(b). A chromosome a is said to
be Non-dominated if there does not exist any chromosome b € V search space
that dominates a. A set of such non-dominated chromosome in objective space
is called pareto optimal front. After removing the pareto optimal front, a second
pareto optimal front can be obtained. We assign a rank to each of the chromosome
according to their occurrence in the pareto front. Then the algorithm sorts the
population according to their rank and crowding distance (discussed in section 3.4.4)
for selecting population for next generation. After a certain number of generations
any chromosome from the first pareto front satisfying the soft constraints can be
chosen as the near optimal solution, or a weighted sum of the objectives can be used

for finding suitable solution.

3.4.4 Diversity preservation

It is desired that the evolutionary algorithm maintains a good spread of solutions in
the population, so that sustainable diversity in the population remains and solutions

are not restricted to local optimization.
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Crowding distance

Crowding distance (dist,) of a particular chromosome x in population measures the
density of chromosomes surrounding it.

After non-dominated sorting is completed, each chromosome’s crowding distance is
calculated as the sum of normalized distance between its adjacent neighbors corre-

sponding to each objective. Crowding distance for first and last individual is infinite.

dist, = Z?Zl i (x}}ﬁz)m__f};fﬂg“) where f; is jth objective function, and number of

objectives is k.

Crowded comparison operator

Each chromosome in the population will have two attributes

1. non-domination rank r,

2. crowding distance dist,

A partial order < between chromosomes are defined as:
a<bifr, <m

or (r, = 1) and (dist, > disty)

This means that we prefer a chromosome from less crowded region in search space

in same front.

3.4.5 NSGAII

Non-dominated Sorting Genetic Algorithm II [12] is used as a basic framework for
our Job scheduler module. In NSGA II, initially a random parent population F, is
created. Using the above relation partial order population is sorted. For the first
generation binary tournament selection, recombination, and mutation operators are

used to create an offspring population )y of same size as Fy say N.
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Now we describe the tth generation. A combined population R; = P,UQ); is formed of
size 2N. Then R; is sorted according to non-domination. Now best non-dominated
set i.e. first pareto front F} is chosen for new population. If size of F} is less than
N then solutions from F, are chosen next, followed by Fj and so on. Now a new
population P, of size N is chosen after crowding distance sorting. This population
is now used for selection, crossover, mutation to generate new offspring population
Q41 of size N | and Ryyq is formed by union of P, ; and ;1. A schematic

explanation of procedure is given in Figure 3.2.

Nondominated
h 2 sorting P Selection Q +1
+
- [ ]
(| Crowding Crossover
F: Distance - + .
F; Sorting Mutation

| 4 | 4 { | 4

]
] te— Rej>ted
1

Figure 3.2: NSGA II procedure [12]

3.4.6 Crossover, Mutation and Elitism
Crossover

The crossover operators are the most important part of any evolutionary-like al-
gorithm. In each generation a mating pool of chromosomes is created through a
tournament of selection among chromosomes. Two chromosomes are selected from
mating pool interchanging their genes to obtain new individuals. The aim is to

obtain new individual /chromosome with better fitness function and that will help
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in exploring new regions in search space not explored yet. P, is the probability with
which crossover operator is applied. Crossover operators depends on the chromo-
some representation.
One point crossover: Given two parent chromosomes, this operator first ran-
domly chooses a position between 1 and NUM _JOBS. The point act as cutting
point. Then the two first parts of the parents are interchanged yielding two new
descendants. Schematic representation is given in Figure 3.3.

k-point crossover: This operator is a generalization of one-point crossover.

job-resource mapping

23 jalis]ie| 7|8 ]jo|jrolji|jr2]ji3|j14]jis|jielji7]jis|j19]j20

parent2 1141421 ]32(2]1]2 311144 23 ]1 1141

one-point ICTOSSOVEF

it lialisliel jz|is|jo|joljir]j12]ji3]j14]ji15|j16|j17]j18]j19]j20

chidil2 117|323 14|22]1]2 311414 2|31 11411

Ch"dz14421313221342143313

2l ljalis]ie] 7|8 ]jo|jolji|ji2]ji3|jia]jis|jielji7|jis|ji9]j20

parent1 211 (31213141 (3]2]2 1131421143 ]13(1]3

I [ T T

k-point crossover

parent2

it 2li3ljalislieljz|is|jo]|jolj|ji2]j13|j14|jis|jie|j17]j18]j19]j20

chidi| 2[4 |[4 |21 |3 ]1[3]1]2 3(1]14)1 211413 |1]4]1

Ch"dz11323422221344231313

Figure 3.4: k-point crossover

Two or more cutting points i.e. k£ > 2 are randomly chosen and segments are in-

terchanged alternately yielding two new descendants. However it should be noticed
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that large value of k tends to explore more thoroughly the solution space but it is
likely that it will destroy parents structure. An example is given in Figure 3.4.

Mask Crossover: A mask array of 0/1’s is created randomly of size NUM _JOBS
i.e. mask = my, mg,ms, ..., myur_jos Where m; = 0/1. Figure 3.5 explains this

operator.

. . chromosomepgrent, (1| if m; =0
Vi, chromosomeney, [i] =

chromosomeparent,[i]  otherwise
\

. . chromosomeparent, [t]  if m; =1
Vi, chromosomeey, [i| =

chromosomeparent,[i]  otherwise

\

Fitness based Crossover: In this operator fitness or any other external func-

inli2|i3 ]l el 7|8 o |iolint|jnz|ji3|ira]jis|jielji7]jis|j19]j20

parent1 211 (31213141 (3]2]2 1131421143 ]3(1]3

114142132212 (3]|1]4]42[3]1]1]4]1

parent2

mask [1JofJoJoJr[ 111 1JoJ1]Jol1JoJo[1[1JoJo]1]

uniform crossover |

it lialisliel 7|8 |jo|jtoljir]j12]ji3]ji14]ji15|j16|j17]j18]j19]j20

childi| V|13 2|13 |22 1]2 33421313 [1]1

hilal 2 14 4234|1322 1|1]|4]|4|2|4|3|1]4]3

Figure 3.5: Mask crossover

tion can be used. Our approach yield two descendants. The crossover is computed

as follows. Working methodolgy can be inferred from Figure 3.6.

(
Chromosome parent, [i]  with probability p = %
Vi, chromosome,ey, [i] = parent 91[il+g2[d]
chromosomeparent,[t] with probability 1 —p
\
)
chromosomeparent 1]  with probability p = %
Vi, chromosome ey, [i] = parent ha[i]+ha[i]
chromosomeparent, [i] with probability 1 —p

\



it 23 lialislie| 7|8 | o [jo]jn|ji2]j13]j14|jis|jie|j17|j18]|j19]j20

parent1 [ 2 [ 1 |3 |2 |3 |41 [3]2]2 1131421433113

parent2

normalized rl r2 r3 r4
energy parameter 0.9 0.85 1.0 0.7

processing parameter | 0.85 0.6 0.7 1.0

probability of inherence of gene for child1 from

0.485]0.562 | 0.588

parent1 0.5 |0.526 | 0.411 |0.514 |0.540 | 0.485| 0.5 | 0.473| 0.526| 0.5 |0.S48 | 0.514|0.411 | 0.526| 0.526|0.562 | 0526,

fitness over energy parameter

probability of inherence of gene for child2 from

0.459

0.411| 0.5 |O,451

parent2l0‘413 o‘ssslo.sss |o.538|o.413| 0.5 |04548|O.451| 05 |0.375|O.586|0.588|O.451|0.451 |o.459|o.451l

fitness over processing capability parameter

Figure 3.6: Fitness based crossover

Each resource in grid has processing capability and energy efficiency parameter.
They almost counteract each other and need a tradeoff between them to find opti-
mal schedule.
Here g1[i], g2[i] are energy efficiency parameter of chromosomeparent, 1] and chromosomeparent, [i]
respectively. Similarly hy[i], hali] are processing capability parameter of chromosomeparent, |1]

and chromosomeparent, 1] respectively.

Mutation

P, is the probability with which mutation operator is applied. Mutation operators
used as follows.

Mowe: This operator randomly assigns a resource to the job. Care is taken that
resource type is same i.e. resource belongs to same set.

Swap: This operator randomly chooses two jobs and swap their assigned resources
if they belong to same set.

Rebalancing: This operator takes into account number of jobs assigned to each
resource. This operator chooses most overloaded resource and randomly pick a job

assigned to it. Then the job is moved to a resource which is less overloaded.
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move mutation

213 ljalis] el j7]j8]jo|jro]ji1]j12]j13]ji14]|ji15|j16|j17]j18]j19]j20

chromosome

move move

itl2l3 |jalis]ie| g7 )8 |jo[jto]ji1|jn2]j13]j14|j15|j16|j17|j18|j19]j20

new

chromosome > | a 1 31414 1 3 4 |2 1 21 41| 3 112 3 3 2 (4

swap mutation

inl2]3 |jaljs|ie|7]8 | jo[jto]ji1|jn2]j13]j14|j15]j16]j17|j18]j19|j20

chromosome

2 (41112 (441342 (1] 1]4(3]1]2(3]3]|2]3

e |V 2[53 |54 |5 | 6| 7|8 |9 [i10j11|j12]j13|j14|j15]j16(j17|j18 | j19])20
chromosome

Figure 3.8: Mutation- swap
Elitism

In the process of crossover and mutation it is possible that some good chromosomes
might be lost. Elitism is a mechanism to preserve these chromosomes. A small
percentage of the fittest population i.e. first pareto front in multi-objective search

space is forwarded to be the part of new population for next iteration.

3.5 Dynamic scheduling

Application jobs queued in grid are fed to the MOJS module in batch. The output
is the elitist pareto front of chromosomes comprises near optimal schedules. Soft
constraints and weighted sum approach is applied on multiple objectives to finalize
a chromosome as scheduling strategy. Some jobs are queued on their respective
resource while others are again fed to MOJS module. The number of jobs queued
depend on the fitness of the chromosome and time available for the scheduler to re-
run and find a better schedule. Progress is ensured by setting a minimum number

of jobs to be queued on a single run of module.
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As this is a real time scheduling problem and resources are dynamic in nature it can
participate and leave the system any time, it is of higher importance to make the
scheduling dynamic in nature. By dynamic we mean re-allocation of already sched-
uled jobs which were not completed. So change in the resource pool can trigger
running of scheduler which can either reschedule the jobs whose resources have left
the grid or can request processing of new jobs on addition of one or more resources
or both of them. Jobs whose predecessors is present in the set of rescheduled jobs
are also rescheduled.

There is very little scope for this paper to solve the issue where a job suffers starva-
tion and penalty due to failure of resource. To handle this issue accounting of Mean

Time to Failure (MTTF) with log mining can help.

3.6 Job Grouping for Fine-grained Jobs

Fine grained jobs are grouped to form a single job. Following are the constraints

considered while job grouping.

e Jobs grouped as single job should be of same type i.e. either computational

jobs or storage intensive jobs.
e Prevail same job precedence rule after job grouping.

Workflow and precedence of jobs is represented through Directed Acyclic Graph
(DAG), where nodes are jobs and directed edge represents precedence.

A directed edge from a to b is drawn, when b awaits for the completion of job a
and a is said to be the predecessor of b and b is the successor of a. Nodes having
common edge are defined as adjacent nodes. We define a,b to have same job type
if their resource type requirement is same.

Before we present our heuristic algorithm for job-grouping, we define few terms as

follows:
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3.6.1 Entry job

A job without any predecessor but has atleast one successor is called entry job. If
there are multiple entry jobs for a DAG component then we add a zero size job/node
and new directed edges are drawn from zero size job to entry jobs. Hence we have

a single entry job denoted as jeptry-

3.6.2 Exit job

A job without any successor but has atleast one predecessor is called exit job. If
there are multiple exit jobs for a DAG component then we add a zero size job/node
and new directed edges are drawn from exit jobs to zero size job. Hence we have a

single exit job denoted as jeyit-

3.6.3 Job size

Size of a computational job is measured in Million Instructions(MI) and storage jobs

in Megabytes(MB). It is denoted as job_size(J)computational OF jOb-5iz€(J)storage-

Note:
e A computational job has job_size(j)storage = 0 MB

e A storage job has job_size(])computationat = 0 MI

3.6.4 Ciritical length

Critical length denoted as crit(j) refers to the longest distance from jenry t0 Jewit
passing through the job j. There are two types of jobs viz., computational inten-
sive and storage intensive jobs. Hence we consider crit(j)computationat, CTit(J)storage
accordingly for calculation in Algorithm 1 depending on the job type.

The Upward Critical length of job j is the longest distance from j to the exit job

Jewit- 1t is denoted as crity,(j)<type> where —ype~ is computational and storage.
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Algorithm 1 job grouping
Input: Job pool with DAG representation
Compute crityy(j)<uypes> for each job j according to the equation 3.1
Compute critgown(J)<type> for each job j according to the equation 3.2
Compute crit<iype> for each job j according to the equation 3.3
while Job a € job pool exists, where a is unprocessed fine-grained job do
flag + 0
while a is fine-grained job and flag =0 do
for each b € adjacent_node(a) and same type i.e. computational or storage
do
Temporary merge adjacent node b and a to form ¢
Calculate new crit,,(t)<types » Critdown(t)<types and crit(t) <iype
if new crit(t)ciypes < rit(Jentry)<type> and crit(t)<yype> is minimum till
now then
merge_node < b
end if
end for
if merge_node is found then
Permanently merge merge_node with a to form o’
Change parent and child relation accordingly
if ' is not fine-grained job then
flag + 1
end if
else
flag <1
end if
end while
end while

Upward critical length is computed with the equation 3.1 starting from jewxit and

moving upward towards j.

Crituy(J) <types = JOb_siz€(J) ctype> + MAT jresuce(s) (CTTtup(J") <type>) (3.1)

Similarly, the Downward Critical length of job j is the longest distance from the
entry job jeptry to j. It is denoted as crit gown (J)<type> Where <ypes is computational
and storage. Downward critical length is computed with the equation 3.2 starting

from jentry and moving downward towards j.

Critdown (j)<type> = jObeize(j)<type> + m&xj’epred(j)(critdown (j/)<type>) (32)



27

Crit(j)<type> = CTétup(j)<type> + Critdown (j)<type> (33)

Note: crit(jentry)<type> is the longest distance from jeniry t0 jeair in the DAG. The
path with the longest distance from the jentry t0 jerit is called critical path. Any job
whose ¢rit(j) <type> value is equal to crit(jentry) <type> is on a critical path is considered
as a critical job. The heuristic applied in algorithm 1 is to group fine-grained jobs

without increasing the critical path length of the DAG.

3.7 Algorithm Description

Algorithm 2 MOJScheduler
Input: Jobs|]NUM _JOBS],Resource] NUM _RESOU RCES|,n,num_iteration
Initialization: Generate initial population P, of n chromosomes
Fitness Calculation:
fort:=1—ndo
Evaluate(chromosomeli] from P;)
end for
for i = 1 — num;teration do
Selection: Select a subset of even number of chromosomes from P,
P, = Select(P,)
Crossover: With probability P, crossover every two chromosome from F;,
P, = crossover(P;,)
Mutation: With probability P,, mutate chromosome from P;,
P,, = mutate(P;,)
Fitness Calculation:
fort:=1—ndo
Evaluate(chromosomeli] from P,,)
end for
P, =P+ P,
Assign non-domination rank to each chromosome, Non-dominating_Sort(P;, )
calculate_crowding_distance(FP;,)
Sort based on Crowding distance of each chromosome
crowding_distance sorting(F;, )
Replacement: Create population for new generation
Forward 1st n chromosomes from sorted set P;, to P,
end for
return Chromosomes with non-domination rank 1 i.e. First pareto front
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Algorithm 3 crossover(FP;)

Input: Set of chromosomes P; with population 2m,P,
Initialize set @)
fori=1—mdo
Randomly choose two chromosome z,y from P,
p = random_double(0, 1), random_double(x,y) generates a number [z, y]
if p <p. then
c = random_int(0,2), random_int(x,y) generates an integer [z, y]
if ¢ =0 then
k < random_int(0,10)
x1,y1 = k_point_crossover(x,y)
Add 1,y to @
end if
if c =1 then
x1, Y1 < uniform_crossover(x,y)
Add z1,y; to Q
end if
if ¢ =2 then
x1,y1 < fitness_based_crossover(x,y)
Add 1,1 to Q
end if
end if
end for
return Set ()
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Algorithm 4 mutation(P;)

Input: Set of chromosomes P;, P,
for i = 1 — size(P;) do
Select chromosomeli]
p = random_double(0, 1), random _double(zx,y) generates a number [z, y]
if p < p, then
¢ = random_int(0,2), random_int(x,y) generates an integer [z, ]
if ¢ =0 then
count = random_int(1,10), change at most 10 genes
for i =1 — count do
pos = random_int(0, NUM _JOBS)
Assign a new resource to gene pos from same resource type
move(chromosomeli|,pos)
end for
end if
if ¢ =1 then
count = random_int(1,10), change at most 10 genes
for i =1 — count do
pos; = random_int(0, NUM _JOBS)
poss = random_int(0, NUM _JOBS)
Assign a new resource to gene pos from same resource type
swap(chromosomeli|,pos,,poss)
end for
end if
if ¢ =2 then
count = random_int(1,10), change at most 10 genes
for s =1 — count do
pos = random_int(0, NUM _JOBS)
Assign a new resource to gene pos from same resource type
rebalancing(chromosomeli|,pos)
end for
end if
end if
end for
return Set P;
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Algorithm 5 calculate_crowding_distance(F;)
Input: Set of chromosomes P;

[ = size(F;)

fori=1—1do

diStchromosome[i] =0
end for

for m = 1 — num_obj, Here number of objective i.e. num_obj functions is 5 do
sort(P;,m)
diStchromosome[l} < 00

diStchromosomely) < 00, ensuring boundary chromosomes are always there
fori=2—>1—-1do

diStchromosome[i] = diStch’r‘omosome[i} +

fchromosome[i+1]m _fchromosome[if 1]m

fma.r 7fmin
m

where fonromosome[il,, 13 mMth objective function of chromosomeli]
fme® is max value of mth objective function &
fmin is min value of mth objective function

end for

end for
return Set P




Chapter 4

Implementation and Results

We have implemented our proposed scheduler and simulated the grid environment
with standard worloads. The dispatcher uses Message Passing Interface(MPI) com-
munication environment to interact with the resources and submit jobs. In this
chapter implementation methods and experimentation details of scheduler and its

performance based on various parameters have been discussed.

4.1 Implementation Details

We have implemented our work in C++ programming language. The job scheduler
module schedule jobs. The resource manager simulates the dynamic behaviour of
resources in grid. An initial configuration of the online resources is considered before
starting the job scheduling process. The dispatcher send jobs to corresponding
resources.

Implemented system with job scheduler module has following features.

e Preprocessing of fine-grained jobs for reducing computing complexity of job

scheduler.

e Flexibility of choosing best scheduling strategy from first pareto front. First
pareto front represents non-dominating sets of strategies based on objective

parameters.

31
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Figure 4.1: Implemented System model

e Normalized weighted sum approach, where weights can be changed dynami-

cally assigned based on the change in grid behaviour.

e Configuring resources on the fly. Adding, modifying and deleting resources via

resource manager.

e Real time job scheduler.

4.2 System model

Here we discuss detailed architecture of the implemented system. We have used
posix thread to share the scheduling or mapping queues with the dispatcher. The

Multi-objective Job Scheduler module run on one thread and dispatcher on another.
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The scheduler act as a producer and the dispatcher as a consumer. To simulate
the grid environment the dispatcher sends job details through MPI to its mapped
resource. The resources waiting for the messages on receiving job, run dummy jobs
with the parameters passed on to it. Figure 4.1 is the schematic representation of
the implemented system.

Dispatcher and scheduler maintains separate queues for separate resources. When

a resource goes down, jobs of that queue is rescheduled on available resources.

4.2.1 Job queue

It have been considered that a job requires a single core of processor for execution.

Table 4.1 represents a segment of job queue. Each grid job has following properties:

e JOB_ID is an unique identifier for a job.

e Grid jobs are either CPU intensive or I/0O intensive represented as JOB.TY PE

0/1 respectively.

e PRED_ID is the predecessor job on which the job is dependent. —1 represent

no dependencies on other job.

e JOB.SIZE of CPU intensive jobs are either represented in MI (Million In-

struction).
e JOB_SIZEFE of I/0O intensive jobs are either represented in MB (Mega Bytes).

o T'IME LIMIT is a constraint for job completion, exceeding time limit im-
poses penalty. Unit of TIME_LIMIT is seconds.

e JOB_COST is the expected cost to be incurred by the user based on the QoS

agreement. Unit of JOB_.COST is currency e.g. USD($).

4.2.2 Resource model

Resource manager configures each resource with the following properties. Table 4.2

shows configuration of some of the resources in grid.
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JOB_ID | JOBSIZE | TIME_LIMIT | JOB.COST | PRED_ID | JOBTYPE
in MI/MB in seconds in$
42 24,000 MI 63.0 5.41 29 0
43 130,000 MI 107.0 4.86 -1 0
44 10,500 MI 106.0 2.99 24 0
47 530.0 MB 150.0 5.04 29 1
48 240,200 MI 133.0 5.40 31 0

e RESOURCUE_ID is an unique identifier for a resource.

e Resources are either computing resource or storage resource represented as

RESTY PE 0/1 respectively.

e Computational resource processing capability is measured in MIPS (Million

Instruction per second) or IPS(Instruction Per second) per core, and for stor-

age resources it is measured in MB/s. We denote it as RES_CAP [37].

e Another resource parameter is power dissipation/consumption figure in watts.

RES_ENFERGY is also represented in a normalized form [38].

Resource power dissipation figure is measured in Watts. Resource with maximum
power dissipation figure is found and scaled to 1.0. Similarly other resources power
dissipation figures are scaled with maximum power dissipation figure. For example
Intel Core i7 920 (Quad core) consumes 130 Watts and Intel Core 2 X6800 (Dual

core) consumes 75 Watts, 130 Watts is normalized to 1.0 and 75 Watts to 0.577 [38].

e RES COST is the cost of the resource per second.

Resources manager module updates available resources information in a file which

is being read by Job scheduler module before each run.
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RESOURCE_ID | RES. COST | RESTYPE | RES_ ENERGY RES CAP
in $ normalized in MIPS/MBPS

4 0.13 0 0.943 9,726 MIPS

5) 0.14 0 1.000 29,621 MIPS

6 0.13 0 0.577 13,539 MIPS

7 0.11 1 0.894 30.0 MBPS

4.2.3 QOutput of scheduler

The scheduler yields mapping of jobs and resources with start time and expected
execution time of each job. Each resource has its own queue. A queue of jobs

mapped to resource id 1 is shown in Table 4.3

Table 4.3: Mapping queue for RESOURCE_ID 1

JOB_ID | RES_ID | START TIMFE | EXECTIMFE
in seconds in seconds

95255 1 952.42 138.30
95259 1 1090.73 78.58
95205 1 1169.31 37.71
95306 1 1207.03 62.86
95301 1 1269.90 59.72
95337 1 1329.62 194.88

4.2.4 Randomize function

In any stochastic algorithm randomize function plays an important role. A very fast

219937 _ 1 is used in different

random number generator Mersenne Twister of period
parts of the code and has a better equidistibution property. It generates integer in

the range 0 to 2%2 — 1 and real number range [0, 1) with a precision of 23% [34].



36

4.3 Data Sets

Standard grid workload from Grid Workload Archive have been used in this experi-
ments [18]. The traces and logs of different grid environments are given in standard
gwf format. Gridloads are processed to add a few more parameters like cost of jobs,
jobs time limit for completion, predecessor dependencies among jobs and type of
jobs.

SHARCNET & DAS-2 are the two traces that have been processed. Traces shows
that execution time of jobs ranges from 1 to 20000 time units in DAS-2, and 1 to
100000 time units in SHARCNET. This shows job characteristic varies widely mak-
ing scheduler task difficult.

For analyzing the performance based on various parameters following workloads

have been created given in Table 4.4.

Table 4.4: Gridlet configuration

Workload_id Trace Precedence constraint | Resource constraint
1 DAS-2 X X
2 SHARCNET X X
3 DAS-2 X v
4 SHARCNET X v
5 DAS-2 v X
6 SHARCNET v X
7 DAS-2 v v
8 SHARCNET v v

Workloads are created on the basis of imposing constraints on traces. Job
precedence rule is referred to as precedence constraint and constraint of exe-
cuting jobs on particular type of resource is referred to as resource constraint.

Predecessor jobs have been created with the statistics given in table 4.5
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Table 4.5: Precedence Constraints

| Percentage of Jobs | 50% |
Range [JOBID -100 , JOBID -1]
Mean [JOB_ID -50]
Variance 20

4.4 Results

In order to evaluate the performance of our scheduler we have performed set of
experiments on the workloads mentioned in section 4.3. The scheduler can schedule
200 jobs in 21 seconds. For more optimized results chromosome population and

iteration in our algorithm can be increased.

4.4.1 Experiment on independent jobs

Experiment results given in Figure 4.2, 4.3, 4.4, 4.5 on workload 1 and 2 shows
minimization of makespan and proper utilization of resources on independent jobs.
Result shows that irrespective of the large variation of granularity in grid jobs we
have achieved 99%+ utilization performance in almost every resource. Result shows
the scalability of our scheduler, we have tested the scheduler with 5000, 10000,
15000, 20000, 25000 jobs; and on 10, 15, 20, 25 resources. This shows that scheduler
can process large amount of gridlets and resources without compensating on the
Makespan and utilization of resources. The scheduler have yield near optimal map-
ping strategy optimizing on the time limit limit penalty and cost penalty referred

in section 3.3.

4.4.2 'Trade off between energy consumption and perfor-

mance

Now energy parameter and performance parameter is considered while scheduling.
It is worthy to note that if job is scheduled on high performance resource less time
will be required for job completion and time limit constraint can be satisfied. Again,

a job will try to be mapped on a energy efficient resource minimizing overall power
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Figure 4.2: Evaluation of makespan and utilization on 10 resources on workload 2
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Usually resources with high performing capability are less energy efficient. Jobs
having large time limit can afford to be scheduled on low performance resource with
low power consumption figures without being penalized for exceeding time limit.
However high priority jobs needs high performance resource to process jobs within
time limit.

The results given in Figure 4.6(a) have been obtained by assigning equal weights on
performance and energy efficiency objective on pareto front 4.7. Resource configu-
ration for this experiment is given in Table 4.6. Experiment result for workload 2 is
shown in Figure 4.6(a). Pentium 4 being poor in performance and energy dissipa-

tion factor as compared to other resources, have less uptime or running time. Now
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Table 4.6: Resource configuration for experiment on workload 1 and 2

Machine Frequency | Watts | MIPS/core | Resource_id
Pentium 4 Extreme Edition 3.2 GHz 92.1 9,726 1,2
Intel Core 2 X6800 (Dual core) 2.93 GHz 75 13,539 3,4
Intel Core 2 QX6700 (Quad core) | 2.66 GHz 95 12,290 5,6
Intel Core 17 920 (Quad core) 2.667 GHz | 130 20,575 7,8
Intel Core 17 3960X (Hex core) 3.3 GHz 130 29,621 9,10
Core 17-2600 3.4 GHz 95 32,075 11, 12

comparing resources Core 2 X6800 with Core 2 QX6700, they have almost same
MIPS specification but Core 2 X6800 consumes less power. Figure 4.6(a) shows
that scheduler have allocated more jobs in Core 2 X6800 which is reasonable. Same
logic can be applied for resources Core i7 920 and Core i73960X. They have same
energy dissipation factor but Core 17 3960X performance is better. As a consequence
scheduler have scheduled more jobs on Core i7 3960X. Best resource of the lot is
Core i7-2600. The scheduler have uniformly distributed jobs among Core 2 X6800,
Core i7 3960X and Core i7-2600 to have a minimum makespan.

Since workload 2 has large variation in the granularity of jobs the graph shows a
worst case analysis in their utilization. In the best case scheduler will try to schedule
jobs such that running time on each resource is same 4.6(b).

Figure 4.7 shows how our scheduler gives a better grip to the administrator to trade
off between user objectives and grid administrator objectives. Each point on the
space represents a scheduling strategy. In a 3D co-ordinate system we represents
3 objectives which are needed to be minimized namely (i) makespan (ii) Energy
efficiency parameter, (iii) time targidity. Any point in the first pareto front can be
chosen for scheduling strategy. This gives grid administrator wide range of choices

and cope up with dynamic behaviour of grid.

4.4.3 Experiment: Introducing job type constraint

Now we introduce the job type constraint in our experimental analysis. Workload 3
and 4 referred in Table 4.3 have been used in this experiment. There are two type

of jobs in the worload. On each workload we varied job percentage as 30%-70%,
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Figure 4.7: pareto front for makespan, time targidity and energy efficiency

50%-50%, 70%-30% to show the adaptiveness of our scheduler. A batch of 7000
jobs were taken which makes makespan of range 107 to show the analysis in graph.
Figure 4.8 shows uniform utilization among same type of resources inspite of the
variance of job type percentage. One thing is further noticeable that analysis of
section 4.4.2 still holds. Intel core i7 920 and Core i7-2600 performed equally well
whereas Pentium 4 have disappointed again.

For choosing a scheduling strategy from first pareto front weighted sum technique

on normalized objectives have been used. For the result shown in Figure 4.8 and
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4.9 equal weight was assigned on each objective.
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4.4.4 Experiment: Introducing pricing model and prece-

dence constraint

In this phase of experiment pricing parameter is incorporated in resource model. Ex-
perimented result shows how pricing model can change the utilization of resources.
Workload 5 & 6 have been used for this experiment having 50% of job with prede-
cessor dependencies referred in Table 4.3.

Resources which are both low in performance and poor in energy efficiency is cheap
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in price, whereas high performance resource with less energy dissipation figure is pre-

ferred. Jobs having low job cost or high time limit can afford to run on these cheap

resources whereas high priority jobs demanding high performance run on costly re-

sources. Trade off among performance, time of execution and cost have allowed jobs

to be scheduled on various resources uniformly. In table 4.7 & 4.8 it is observed

that resources have adhered to the makespan and all have 98%+ execution time.

Utilization percentage shows actual uptime or running time of resources. This re-

veals that all resources have been utilized properly. Even resources like Pentium 4

have 95% utilization on average.

cent?”.

A question might arise in reader’s mind “Why resource utilization is not 100 per-

jobs to wait on other idle resource.

Jobs are having some precedence constraints; and a job scheduled on its

compatible resource might take a little longer time to complete, forcing dependent

In our experiment we have given equal weight to cost pricing, utilization of

resources, time limit constraint and makespan. The grid administrator can configure

the weight function to obtain required schedule strategy from first pareto front in

search space like one given in figure 4.7.

Table 4.7: Resource Utilization after introduction of Job constraint and pricing
model Workload 6 (SHARCNET)

ID | Resource Pricing model | Execution time | Makespan %age | Actual utilized time | Utilization %age
1 | Pentium 4 0.05 12048592.25 98.01 11813044.19 98.04
2 | Pentium 4 0.05 12163752.56 98.95 11300235.12 92.90
3 | Pentium 4 0.05 12164478.67 98.95 11686679.20 96.07
4 | Intel Core i7 920 (Quad core) 0.1 12046834.85 97.99 11272379.33 93.57
5 | Intel Core i7 920 (Quad core) 0.1 12047842.36 98.00 11749485.96 97.52
6 | Intel Core 2 Extreme X6800 0.09 12048727.00 98.01 11734951.47 97.39
7 | Intel Core 2 Extreme X6800 0.09 12160673.18 98.92 11776008.86 96.83
8 | Intel Core i7 Extreme Edition 0.15 12162928.27 98.94 11422999.16 93.91
9 | Intel Core i7 Extreme Edition 0.15 12160661.70 98.92 11777797.37 96.85
10 | Intel Core 2 Extreme QX6700 0.165 12160968.73 98.92 11864565.48 97.56
11 | Intel Core 2 Extreme QX6700 0.165 12156329.05 98.89 11976902.34 98.52
12 | Intel Core 2 Extreme QX6700 0.165 12160817.18 98.92 11727719.11 96.43
13 | Intel Core 2 Extreme QX6700 0.165 12160965.55 98.92 11931317.99 98.11
14 | Core i7-2600 0.18 12293364.46 100.00 11959913.00 97.28
15 | Core i7-2600 0.18 12161210.37 98.92 12059303.00 99.16
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Table 4.8: Resource Utilization after introduction of Job constraint and pricing
model Workload 5 (DAS-2)

ID | Resource Pricing model | Execution time | Makespan %age | Actual utilized time | Utilization %age
1 | Pentium 4 0.05 307118.82 99.20 280545.30 91.34
2 | Pentium 4 0.05 301366.18 97.34 270360.92 89.71
3 | Pentium 4 0.05 300697.12 97.12 270477.22 89.95
4 | Intel Core i7 920 (Quad core) 0.1 307367.74 99.28 273357.18 88.93
5 | Intel Core i7 920 (Quad core) 0.1 307456.72 99.31 283748.63 92.28
6 | Intel Core 2 Extreme X6800 0.09 305703.06 98.74 269904.98 88.28
7 | Intel Core 2 Extreme X6800 0.09 305227.13 98.59 276089.83 90.45
8 | Intel Core i7 Extreme Edition 0.15 305428.16 98.65 288772.30 94.54
9 | Intel Core i7 Extreme Edition 0.15 303222.35 97.94 278433.59 91.82
10 | Intel Core 2 Extreme QX6700 0.165 309606.43 100.00 291890.84 94.27
11 | Intel Core 2 Extreme QX6700 0.165 309296.74 99.90 291225.75 94.15
12 | Intel Core 2 Extreme QX6700 0.165 305602.29 98.71 288181.42 94.29
13 | Intel Core 2 Extreme QX6700 0.165 303673.86 98.08 297436.40 97.94
14 | Core i7-2600 0.18 308464.86 99.63 303151.00 98.27
15 | Core i7-2600 0.18 308339.70 99.59 303203.00 98.33

4.4.5 Experiment with all constraints

In this section we have incorporated all the constraints and evaluated our scheduler

on workload 7 and 8 referred in Table 4.3. Experiment is performed on 12 and 24

resources. For the sake of understanding equal number of resources for both type of

jobs have been taken.

Results are given in Table 4.9, 4.10, 4.12 and 4.11. There is no big difference

with the result of Table 4.8 and 4.7. In this result, it is observed that utilization

percentage have dropped a little. Since jobs now have inter-resource type job de-

pendencies utilization percentage drop is reasonable. Other performance parameter

holds good.

An example of pareto front for this experiment is given in Figure 4.10

Table 4.9: Resource Utilization under all constraints

n Workload DAS-2

ID | Resource Pricing model | Execution time | Makespan %age | Actual utilized time | Utilization %age
1 | Pentium 4 0.05 388054.55346 95.31 337986.508894 87.10
3 | Intel Core i7 920 (Quad core) 0.1 | 390646.860537 95.95 362241.059321 92.72
5 | Intel Core 2 Extreme X6800 0.09 | 391917.860219 96.26 357671.610452 91.26
7 | Intel Core i7 Extreme Edition 0.15 | 389061.135613 95.56 367173.559685 94.37
9 | Intel Core 2 Extreme QX6700 0.165 | 389834.143125 95.75 368452.037427 94.51
11 | Core i7-2600 0.18 | 394967.616183 97.01 365376 92.50
2 | Pentium 4 0.05 | 407130.811479 100.00 362875.39219 89.12
4 | Intel Core i7 920 (Quad core) 0.1 | 406698.612175 99.89 343454.864029 84.44
6 | Intel Core 2 Extreme X6800 0.09 | 403146.303747 99.02 348012.012859 86.32
8 | Intel Core i7 Extreme Edition 0.15 | 402622.406754 98.89 378981.878416 94.12
10 | Intel Core 2 Extreme QX6700 0.165 | 405572.293961 99.62 385571.358202 95.06
12 | Core i7-2600 0.18 | 394268.616183 96.84 374894 95.08
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Table 4.10: Resource Utilization under all constraints on Workload SHARCNET

ID | Resource Pricing model | Execution time | Makespan %age | Actual utilized time | Utilization %age
1 | Pentium 4 0.05 | 15856966.328786 99.65 14643863.906402 92.34
3 | Intel Core i7 920 (Quad core) 0.1 | 15777189.495383 99.14 14224208.443954 90.15
5 | Intel Core 2 Extreme X6800 0.09 | 15777954.142035 99.15 14347179.713218 90.93
7 | Intel Core i7 Extreme Edition 0.15 | 15853934.301256 99.63 14962167.332284 94.37
9 | Intel Core 2 Extreme QX6700 0.165 | 15855065.258749 99.63 14971170.083674 94.42
11 | Core i7-2600 0.18 | 15807884.835386 99.34 14039647 88.81
2 | Pentium 4 0.05 | 15855945.977623 99.64 15192585.514258 95.81
4 | Intel Core i7 920 (Quad core) 0.1 | 15856889.388767 99.65 15492772.72683 97.70
6 | Intel Core 2 Extreme X6800 0.09 | 15856577.788845 99.64 15509484.322644 97.81
8 | Intel Core i7 Extreme Edition 0.15 | 15808788.880171 99.34 15123906.518069 95.66
10 | Intel Core 2 Extreme QX6700 0.165 | 15913317.542563 100.00 15439774.23157 97.02
12 | Core i7-2600 0.18 | 15884947.971385 99.82 15685884 98.74

4.5 Conclusion

The main motive of this work is to provide a flexible scheduler keeping multiple

objectives into consideration. The scheduler module yields best scheduling strate-

gies on various parameters in a pareto front. This is upto grid administrator and

dynamic grid environment to choose a scheduling strategy of its choice. For exper-

imentation purpose we have put equal weights on each objective for choosing best

scheduling strategy.

Our results clearly shows that our scheduler produces optimized schedule on multi-

objective optimization environment. The scheduler is scalable with resources and

can process an infinite queue of jobs. The scheduler responded well with the change

of constraints and behaviour of grid and job model. All resources have adhered to

the makespan, and utilization rate is also high inspite of precedence constraint. It
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Table 4.11: Resource Utilization under all constraints on Workload SHARCNET

ID | Resource Pricing model | Execution time | Makespan %age | Actual utilized time | Utilization Percentage
1 | Pentium 4 0.05 8243698.72 99.49 7556234.165463 91.66
2 | Pentium 4 0.05 7275262.72 87.81 6253412.084217 85.95
3 | Intel Core i7 920 (Quad core) 0.1 7682671.48 92.72 6326204.11 82.34
4 | Intel Core i7 920 (Quad core) 0.1 8233315.82 99.37 7351339.16 89.28
5 | Intel Core 2 Extreme X6800 0.09 8117606.74 97.97 7269743.03 89.55
6 | Intel Core 2 Extreme X6800 0.09 8118002.88 97.98 7072373.18 87.11
7 | Intel Core i7 Extreme Edition 0.15 8117468.76 97.97 7183725.78 88.49
8 | Intel Core i7 Extreme Edition 0.15 8244584.64 99.50 7426916.89 90.08
9 | Intel Core 2 Extreme QX6700 0.165 8117904.66 97.98 7220275.87 88.94
10 | Intel Core 2 Extreme QX6700 0.165 8119335.22 97.99 7202661.19 88.70
11 | Core i7-2600 0.18 8229761.81 99.33 7763631 94.33
12 | Core i7-2600 0.18 8244728.91 99.51 7615311 92.36
13 | Pentium 4 0.05 8119374.38 97.99 7906705.979229 97.38
14 | Pentium 4 0.05 8231574.39 99.35 7705017.3826 93.60
15 | Intel Core i7 920 (Quad core) 0.1 8229150.06 99.32 7628743.04 92.70
16 | Intel Core i7 920 (Quad core) 0.1 8117134.83 97.97 7339766.91 90.42
17 | Intel Core 2 Extreme X6800 0.09 8244402.12 99.50 7126312.76 86.43
18 | Intel Core 2 Extreme X6800 0.09 8120187.28 98.00 7600934.79 93.60
19 | Intel Core i7 Extreme Edition 0.15 8285650.01 100.00 8151742.16 98.38
20 | Intel Core i7 Extreme Edition 0.15 8230477.53 99.33 7746832.68 94.12
21 | Intel Core 2 Extreme QX6700 0.165 8232608.55 99.36 7776374.29 94.45
22 | Intel Core 2 Extreme QX6700 0.165 8230191.41 99.33 7517359.04 91.33
23 | Core i7-2600 0.18 8244461.91 99.50 7950420 96.43
24 | Core i7-2600 0.18 8244329.91 99.50 7745014 93.94

Table 4.12: Resource Utilization under all constraints on Workload DAS-2

ID | Resource Pricing model | Execution time | Makespan %age | Actual utilized time | Utilization Percentage
1 Pentium 4 0.05 219982.24 97.21 163440.56 74.29
2 | Pentium 4 0.05 219542.01 97.02 174237.89 79.36
3 | Intel Core i7 920 (Quad core) 0.1 219052.01 96.80 165654.30 75.62
4 | Intel Core i7 920 (Quad core) 0.1 216803.93 95.81 184625.00 85.15
5 | Intel Core 2 Extreme X6800 0.09 219223.62 96.88 182191.65 83.10
6 | Intel Core 2 Extreme X6800 0.09 219492.39 97.00 174748.10 79.61
7 | Intel Core i7 Extreme Edition 0.15 219025.20 96.79 181810.38 83.00
8 | Intel Core i7 Extreme Edition 0.15 220180.92 97.30 188177.47 85.46
9 | Intel Core 2 Extreme QX6700 0.165 224356.86 99.15 177056.99 78.91
10 | Intel Core 2 Extreme QX6700 0.165 195262.07 86.29 171776.61 87.97
11 | Core i7-2600 0.18 219419.10 96.97 190443 86.79
12 | Core i7-2600 0.18 218241.87 96.45 199849 91.57
13 | Pentium 4 0.05 218245.15 96.45 193682.53 88.74
14 | Pentium 4 0.05 221455.49 97.87 179685.28 81.13
15 | Intel Core i7 920 (Quad core) 0.1 220399.63 97.40 173087.60 78.53
16 | Intel Core i7 920 (Quad core) 0.1 223197.97 98.64 184545.05 82.68
17 | Intel Core 2 Extreme X6800 0.09 223858.93 98.93 187562.65 83.78
18 | Intel Core 2 Extreme X6800 0.09 221743.64 97.99 189665.95 85.53
19 | Intel Core i7 Extreme Edition 0.15 225453.79 99.63 164904.97 73.14
20 | Intel Core i7 Extreme Edition 0.15 226286.04 100.00 178501.31 78.88
21 | Intel Core 2 Extreme QX6700 0.165 224749.06 99.32 188318.89 83.79
22 | Intel Core 2 Extreme QX6700 0.165 225663.04 99.72 184520.37 81.76
23 | Core i7-2600 0.18 222377.53 98.27 196349 88.29
24 | Core i7-2600 0.18 223615.40 98.82 201232 89.99

is difficult to display minimization of cost and time targidity parameter in graph or
table. However a live demo of search space graph with schedules/chromosomes on
successive iteration of genetic algorithm can verify its authenticity (Refer to User’s

Manual in Appendix A).



Chapter 5

Conclusion and Future Work

We have addressed the grid job scheduling problem with additional dimension i.e.
introduced precedence constraint with heterogeneous resources and types. Schedul-
ing jobs while keeping multiple objectives in consideration is a challenging task on
a dynamic grid environment. Beyond that, scheduling in grid being a real time
operation, the scheduler should produce result within few seconds or minutes. This
makes scheduling more difficult.

Our resource manager simulates dynamic grid environment by adding and drop-
ping resources. We have formularized minimization functions, created avant-garde
crossover, mutation and selection operator, merged with existing technology of
pareto based optimization technique. The scheduler module outputs a set of best
schedules on each run and offer grid administrator a better grip in choosing a sched-
ule compatible according to the grid environment at that moment. Job-grouping
technique for fine-grained jobs keeping precedence constraint and resource constraint
accelerates the yield of scheduler.

Our job scheduler have not considered some real world scenarios like transfer of jobs
or input files from one cluster to another before executing it. Resources leaving grid
unexpectedly have a huge impact of resource utilization and QoS given to the jobs.
If scheduler somehow obtain knowledge about the behavior of resources from grid
logs, MTTF(Mean Time to Failure); it can schedule accordingly. Mining grid logs

and find behaviour of the resources and jobs is important in real world scenarios.

20



Appendix A

Job Scheduler Module User’s

Manual

This chapter explains how to run and configure our scheduler and its other compo-

nents related to it.

A.1 System Requirements

e Intel processor / AMD processor 2.0 GHz or better, RAM: 4 GB, with 500

MB of free storage space.
e Linux OS (Ubuntu 10.10 / Fedora 13 / Linux mint or better )
e C++ library
e SSH services on resources/computers with key based login.
e MPICH2 library with hydra(mpiexec) [23]

e GNUPLOT software

A.2 Installation

Before executing the scheduler following steps are needed to be done :

51



52

Extract “modjs.zip”

$ tar -xvzf modjs.zip

Compile the source code

$ make

Go to folder “resource”

$ cd resource

$ gCC -C resource_manager.c -o resource

Enter available resource information in “initial_resource.in” in specified format.

Copy any job file from "data” folder and name it ”job.in” for e.g.

$ cp data/DAS-2/job_no_pred.in job.in

prepare hostfile.txt with ip address or domain name of all resources.

A.3 Execution

Command to run the job scheduler follows :

e mpiexec -disable-hostname-propagation -hostfile hostfile.txt ./modjsg <plot>

<NUM_JOBS> <POPULATION> <GENERATION> <RANDOM_INTEGER >
e <plot> - 0 (run without GNUPLOT), 1 (without GNUPLOT)

e <NUM_JOBS> - Number of jobs to be scheduled on each run of the job

scheduler module. Range [100,1000] multiplier of 4.

e <POPULATION> - Chromosome population for genetic algorithm range,
Range [200,1000]

e <GENERATION> - Iteration in genetic algorithm, Range [50,300]
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¢ <RANDOM_INTEGER> - Any integer for randomize function seed.
e.g. $ mpiexec -disable-hostname-propagation -hostfile hostfile.txt ./modjsg 0
100 400 300 432421

e Command to run resource manager :
$ cd resource
$ ./resource
To configure the selection criteria of schedule after final population of efficient

schedule has been generated modify weight_fun([] in report_best() function in report.c

file.
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