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Abstract—Grid computing is a high performance computing
environment to fulfill large-scale computational demands. It
can integrate computational as well as storage resources from
different networks and geographically dispersed organizations
into a high performance computational & storage platform.
It is used to solve complex computational-intensive problems,
and also provide solution to storage-intensive applications with
connected storage resources. Scheduling of user jobs properly
on the heterogeneous resources is an important task in a grid
computing environment. The main goal of scheduling is to
maximize resource utilization, minimize waiting time of jobs,
reduce energy consumption, minimize cost to the user after
satisfying constraints of jobs and resources. We can trade off
between the required level of quality of service, the deadline and
the budget of user. In this paper, we propose a Multi-objective
Evolution-based Dynamic Scheduler in Grid. Our scheduler
have used Multi-objective optimization technique using Genetic
algorithm with pareto front approach to find efficient schedules.
It explores the search space vividly to avoid stagnation and
generate near optimal solution. We propose that our scheduler
provides a better grip on most features of grid from perspective
of grid owner as well as user. Dynamic grid environment has
forced us to make it a real time dynamic scheduler. A job
grouping technique is proposed for grouping fine-grained jobs
and for ease of computation. Experimentation on different data
sets and on various parameters revealed effectiveness of multi-
objective scheduling criteria and extraction of performance
from grid resource.

Keywords-Multi-objective, Job scheduling, GA, Grid comput-
ing, Pareto, Job grouping

I. INTRODUCTION

Grid is a parallel and distributed processing architecture
or system that aggregates geographically dispersed resources
to act as a high performance computing environment for
computing extensive jobs. It enables sharing and selection
of resources dynamically depending on their performance,
capability, availability, user’s quality of service requirement
and cost [8]. Grid is heterogeneous in nature where resources
are connected through internet or private networks and their
computational capabilities can vary a lot. Grid features
include high performance, high throughput and scalability;
facilitating inexpensive access to wide range of high per-
formance resources. Grid also has a feature of choosing a
resource in some specific manner while submitting jobs on
it [10].
Grid performance can be improved in terms of job processing
time by confirming that all the resources are utilized effi-

ciently and optimally using a good job scheduling algorithm.
Job scheduler exists in many conventional distributed envi-
ronment systems. However dynamic nature, high heterogene-
ity of resources, high variance in jobs granularity, intercon-
nection networks, existence of local policies on resources of
grid makes grid job scheduling different from conventional
approach and more challenging [27].
Grid scheduler follows a series of following steps [20] :
(1) Collecting information of jobs submitted, (2) Collecting
available resource information, (3) Find scheduling strategy
i.e. mapping of jobs to feasible resources, (4) Job allocation
according to the mapping, and (5) Monitoring jobs running
status and completion.
Maximum utilization of grid resources is the most cogitated

Figure 1: Simplified Scheduling Model

objective in scheduling literatures. However other factors
like maintaining QoS constraints, cost effectiveness, energy
efficient scheduling were either discussed separately or not
acknowledged. Fair amount of importance should be given
to user satisfaction, time and cost deadline of jobs. In 2007,
Gartner estimated that the Information and Communication
Technology industry is liable for 2% of the global CO2

emission annually, which is equal to that from the aviation
industry [21]. Above mentioned facets clearly show an ur-
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gency for a multi-objective grid scheduler, dealing them on
their gravity of importance.
The Job scheduling in Grid is correlated with a classical prob-
lem, Flexible Job-shop Scheduling problem(FJSP) [7] with
dynamic changes of resources and their availability. Besides
these grid jobs need to be scheduled as soon as possible after
they are enqueued in the job queue, granting the scheduler
only a few minutes of time to find the scheduling strategy.
FJSP consists of routing subproblem and the scheduling
subproblem [26]. Routing problem is to assign each job with
a resource among a set of resources and scheduling problem
is to obtain a feasible and satisfactory sequence of jobs within
the resources.
Computationally, FJSP is as hard as JSP which is an NP Hard
problem [11]. So finding near optimal solution in polynomial
time is our aim. The problem becomes even more interesting
when multiple objectives are there to be taken care of.
Finding near optimal solution for FJSP problem with more
than one objective in a time efficient way is a difficult task.
Grid environment being dynamic in nature, reallocation of
jobs is quite evident in it.
We present a multi-objective Job scheduler based on an
evolutionary algorithm. The aim of this work is to give grid
administrators a better scheduler, which will give better grip
on the trade off among cost, utilization, energy efficiency
and QoS. The scheduler can cope up with the dynamic
behavior of resources, resource constraints and predecessor
job constraints. A job grouping mechanism is proffered for
fine grained jobs.
Our approach of solving the above problem using Non-
dominated sorting evolutionary algorithm for minimization
of multiple objectives, is well enough to find near optimal
scheduling strategy in time. Non-dominated Sorting Genetic
Algorithm II [9] is used as a basic framework for our Job
scheduler module. Non-dominating sorting mechanism with
our avant-garde crossover and mutation operator enables the
scheduler to explore the search space minutely. The running
time complexity of algorithm is O(GMN2) where G is the
number of generations or iterations, M is the number of
objectives and N is the population size of the chromosomes
or scheduling strategies to run the algorithm.
The organization of the rest of the paper and a brief outline of
the sections is as follows. In section II, some related works
on job scheduling in grids and their merits and demerits have
been discussed. In section III, Multi-objective Evolution
based Dynamic Job Scheduler in Grid has been presented.
Here problem definition, job-grouping strategy, problem for-
mulation, MOJS module and algorithms are described. In
section IV, implementation details and experimental results
are given. Section V sums up the work with conclusion and
future work.

II. RELATED WORK

Job shop scheduling problem has been proven to be
an NP-complete problem in 1979 [16]. Many researcher
have used heuristic based solving approach to address the

problem. Local Search [23], Tabu search [1], simulated
Annealing [28] [1] are single heuristic based approach.
In Tabu search, one solution s moves to another solution
s′ located in the neighborhood with a slight modification
possible from s. Its performance largely depends on the
parameters and heuristic used in formulating the problem.
In simulated annealing technique, each solution is mutated
and if the mutant spawned exceeds threshold it is rejected,
and if less than or equal to the energy of the parent, the
difference of threshold and energy of mutant is added to
Energy Bank(EB). The threshold is changed when EB
reaches a certain value and population moved to new
generation. Simulated annealing in Multiobjective domain
e.g. AMOSA [4] requires many parameters and domination
factor to find near optimal solutions, which are hard to
established in dynamic environment of grid scheduling.
There are also some hybrid approaches like Tabu search with
Ant colony Optimization [22] [24], GA’s with Simulated
annealing [30]. Other predictive model approaches for the
problem are Particle Swarm optimization [18] [2], Fuzzy
based scheduling [17]. AI based scheduling algorithms like
Max-min (Task with more computation time has higher
priority), Suffrage (Task with higher sufferage value is given
higher priority, its value is determined as the difference of
computational time between best and second best resources
on which job can be allocated) [14]. All the above work have
focused on single objective i.e. minimizing the makespan,
which in turn maximizes the utilization of resources and
resource constraint was also not taken into consideration.
Job grouping based scheduling algorithm is used for
fine-grained jobs & light-weight jobs which increase the
resource utilization [19] [3]. However they have not taken
care of predecessor job completion constraint and dynamic
behavior of resources in grid.
GA based scheduler can act as a real time scheduler due
to increase in computational capability of processors in last
five years. EDSA is a GAs searching technique in which
the crossover and mutation rates are changed dynamically
depending on the variances of the fitness values in each
generation [29] . The scheduling consider minimization of
makespan. In our work based on multi-objective evolutionary
algorithm we have converted resource scheduling problem in
grid into resource-constrained project scheduling problem.
We have incorporated dynamic scheduling mechanism,
advanced crossover and mutation operator & minimizing
five objectives with pareto front technique. The GA structure
of Non-dominating Sorting Genetic Algorithm II proposed
by K.Deb et al. have helped us in creating the MOJS
module [9]. MOJS with graph based job grouping strategy
for fine-grained jobs eases the process.
A comparable work with matching constraints could not be
found in literature, only few publications deal with multi-
objective scheduling [12] but their platform is different from
ours. So in result section we experimented our scheduler
and produced result on the performance based on various
parameters.
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III. THE MULTI-OBJECTIVE JOB SCHEDULER MODULE

A. Problem Definition
A dynamic scheduler for grid environment solving flexible

job shop scheduling problem based on multi-objective opti-
mization technique. The problem is defined in three sections:

• Multi-objective optimization based FJSP.
• Dynamic scheduler for frequent change in resource

availability status.
• A job grouping technique for grouping fine grained jobs

helping scheduler to yield scheduling strategy in time.
1) Formulation of problem: Here the problem is formu-

lated with the notations described in scheduling literature [6],
[5], [15]. Given are a set M = {M1,M2,M3, ...Mm} of
resources, a set J = {J1, J2, J3, ...Jj} of application jobs,
and a set O of grid jobs. The n Grid Jobs of application job Ji
are denoted by Oi1, ..., Oin, a set W = {W1,W2, . . . ,Wm}
denotes normalized energy dissipation factor of resources.
Table I gives a concise definition of the notations have
been used. Optimization is done with start time of grid jobs

Table I: Notation Symbol and their definitions

Notation Definition
Mi Resource with ID i
Ji Application job with ID i
Oij jth Grid Job or task of Application job Ji
Wi Energy dissipation factor of Resource Mi,

normalized with the max value from set W
p(Oij , Oik) p is precedence function, if Oij precedes Oik

it is TRUE else FALSE
µij set of all combinations of resources

which can execute Oij

Rij Rij represent mapping of job Oij
on a machine in M , Rij ∈ µij ,

t(Oij , Rij) Processing time of Oij mapped to resource Rij

c(Oij , Rij) Cost of Oij mapped to resource Rij

s(Oij) Oij start time
e(Oij) Oij end time
dij Time limit for completion of Oij

c′ij Cost limit for Oij

l(Mi) Last grid job executed in Mi

tsum(Mi) Running time or Uptime of Mi

s(Oij) ∈ R and allocating them on resources Rij ∈ µij .
If the following restrictions are met a solution is said to be
valid:

1) Each grid job is allocated in such a way that no conflict
happens while demanding resource:

• ∀Oij : ∃s(Oij) ∈ R, Rij ∈ µij : ∀Mj ∈ Rij :
• Mj is in [s(Oij); s(Oij)+ t(Oij), Rij ] exclusively

allocated by Oij

2) Each grid job can start only after its predecessor jobs
finish execution:

• ∀i, j $= k : p(Oij , Oik) ⇒ s(Oik) ≥ s(Oij) +
t(Oij , Rij)

Exceeding the time limit and budget cost will affect QoS of
grid jobs. A penalty factor is imposed when jobs violates
following constraints.

1) All grid jobs Oij have time limit dij which must be
adhered to:

• ∀Oij : dij ≥ s(Oij) + t(Oij , Rij):
2) Optimize allocation of grid jobs on resources such that

cost limit c′ij of grid job Oij is more than cost it is
incurring on current resource mapping:

• ∀Oij : c′ij ≥ c(Oij , Rij)

This work focuses on achieving near-optimal scheduling
strategy on following objective functions:
Minimize y = f(x) = (f1(x), f2(x), f3(x), f4(x), f5(x))
where, x ∈ V, y ∈ R5

i.e., x is decision vector in search space V, y is objective
vector with 5 objectives.

1) Minimizing makespan, e(Oij) is the end time of grid
job Oij

f1 = makespan

= max{e(l(M1)), e(l(M2)), . . . , e(l(Mm))

2) Maximizing utilization of resources i.e. minimizing f2

f2 = non− utilization

=
1

m

m∑

j=1

{e(l(Mj))− tsum(Mj)}

3) Minimizing time limit penalty (minimizing number of
jobs completing after due date)

f3 =
1

j ∗ n
∑

∀i,j
ϕ1(e(Oij)− dij)

where ϕ1(x) is a non-negative continuous exponential
non-decreasing function, if x > 0 else 0.

4) Minimizing cost penalty

f4 =
1

j ∗ n
∑

∀i,j
ϕ2{c(Oij , Rij)− c′ij}

where ϕ2(x) is a non-negative continuous linear non-
decreasing function, if x > 0 else 0.

5) Minimizing Overall Energy consumption

f5 =
m∑

i=1

tsum(Mi) ∗Wi

2) Chromosome model: A scheduling strategy or mapping
of jobs on resources satisfying the constraints is represented
by chromosome. A chromosome stores parameters as follows
(i) Resource id corresponding to each job
(ii) Job start time
(iii) Job end time
(iv) Predecessor job ID of each job
(v) Five objective function values
(vi) Rank of chromosome, see section III-A3
(vii) Crowding distance, see section III-A4
Start time for execution of jobs is calculated according to
heuristic rules
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(i) Schedule grid job as early as its precedent job is com-
pleted.
(ii) Schedule grid jobs according to shortest due date.

Algorithm 1 Multi-objective Job Scheduler
Input: Jobs[NUM JOBS],

Resource[NUM RESOURCES],
n,num iteration
Initialization: Generate initial population P0 of n chromo-
somes
Fitness Calculation:
for i = 1→ n do

Evaluate(chromosome[i] from Pi)
end for
for i = 1→ num iteration do

Selection: Select a subset of even number of chromo-
somes from Pi

Pi1 = Select(Pi)
Crossover: With probability Pc crossover every two
chromosome from Pi1
Pi2 = crossover(Pi1)
Mutation: With probability Pm mutate chromosome
from Pi2
Pi3 = mutate(Pi2)
Fitness Calculation:
for i = 1→ n do

Evaluate(chromosome[i] from Pi3 )
end for
Pi4 = Pi + Pi3
Assign non-domination rank to each chromosome, Non-
dominating Sort(Pi4 )
Calculate crowding distance(Pi4 )
Sort based on Crowding distance of each
chromosome Crowding distance sorting(Pi4 )
Replacement: Create population for new generation
Forward 1st n chromosomes from sorted set Pi4 to Pi+1

end for
return Chromosomes with non-domination rank 1 i.e.
First pareto front

3) Non-Dominated Ranking (Rx): A chromosome a
is said to be dominated by chromosome b iff ∀i ∈
{1, 2, . . . , k} : fi(a) ≤ fi(b) and ∃i ∈ {1, 2, . . . , k} :
fi(a) < fi(b). A chromosome a is said to be Non-dominated
if there does not exist any chromosome b ∈ V search space
that dominates a. A set of such non-dominated chromosome
in objective space is called pareto optimal front. After remov-
ing the pareto optimal front, a second pareto optimal front
can be obtained. We assign a rank to each of the chromosome
according to their occurrence in the pareto front. Then the
algorithm sorts the population according to their rank and
crowding distance (discussed in section III-A4) for selecting
population for next generation.

4) Crowding distance: Crowding distance (distx) of a
particular chromosome x in population measures the density

of chromosomes surrounding it [9].
After non-dominated sorting is completed, each chromo-
some’s crowding distance is calculated as the sum of normal-
ized distance between its adjacent neighbors corresponding to
each objective. Crowding distance for first and last individual
is infinite.
distx =

∑k
j=1

fj(xleft)−fj(xright)
fmax
j −fmin

j
where fj is jth objective

function, and number of objectives is k.
5) Partial order on chromosomes: A partial order ≺

between chromosomes are defined as:
a ≺ b if Ra ≺ Rb

or (Ra = Rb) and (dista , distb)
This means that a chromosome with lower rank is preferred.
Again, a chromosome from less crowded region in search
space is preferred when compared with chromosomes having
same rank. It is desired that the evolutionary algorithm
maintains a good spread of solutions in the population, so that
sustainable diversity in the population remains and solutions
are not restricted to local optimization.

6) Crossover: Crossover operator is applied on two
chromosomes selected from mating pool; interchanging
their genes (resource mapping) to obtain new individuals
and satisfying the constraints. The aim is to obtain new
individual/chromosome with better fitness function and that
will help in exploring new regions in search space not
explored yet. Pc is the probability with which crossover
operator is applied.
k-point crossover: Two or more cutting points i.e. k ≥ 2 are
randomly chosen and segments are interchanged alternately
generating two new descendants. If the value of k is very
large it can explore the solution space thoroughly. But
it will destroy the inherited nature from the parent and
optimization may take longer time to converge than usual.
Fitness based Crossover: In this operator fitness or any
other external function can be used. Our approach yield
two descendants. The crossover is computed as follows.
Here cparent[i] represents the ith gene of parent chromosome.

∀i, cchild1 [i] =

{
cparent1 [i] with probability p = g1[i]

g1[i]+g2[i]

cparent2 [i] with probability 1− p

∀i, cchild2 [i] =

{
cparent1 [i] with probability p = h1[i]

h1[i]+h2[i]

cparent2 [i] with probability 1− p

Each resource in grid has processing capability and energy
efficiency parameter. They almost counteract each other and
need a tradeoff between them to find optimal schedule.
Here g1[i], g2[i] are energy efficiency parameter of cparent1 [i]
and cparent2 [i] resources respectively. Similarly h1[i], h2[i]
are processing capability parameter of cparent1 [i] and
cparent2 [i] resources respectively.

7) Mutation: Pm is the probability with which mutation
operator is applied. Mutation operators used as follows.
Move: This operator randomly assigns a resource to the job.
Care is taken that resource type is same i.e. resource belongs
to same set.
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Swap: This operator randomly chooses two jobs and swap
their assigned resources if they belong to same set.
Rebalancing: This operator chooses most overloaded re-
source and randomly pick a job assigned to it. Then the job
is moved to a resource which is less overloaded.
In the process of crossover and mutation it is possible that
some good chromosomes might be lost. Elitism is a mecha-
nism to preserve these chromosomes. A small percentage of
the fittest population i.e. first pareto front in multi-objective
search space is forwarded to be the part of new population
for next iteration.

B. Dynamic scheduling

Application jobs queued in grid are fed to the MOJS
module in batch. The output is the elitist pareto front of chro-
mosomes comprises near optimal schedules. Soft constraints
and weighted sum approach is applied on multiple objectives
to finalize a chromosome as scheduling strategy. Some jobs
are queued on their respective resource while others are again
fed to MOJS module. The number of jobs queued depend
on the fitness of the chromosome and time available for the
scheduler to re-run and find a better schedule. Progress is
ensured by setting a minimum number of jobs to be queued
on a single run of module.
As this is a real time scheduling problem and resources are
dynamic in nature it can participate and leave the system
any time, it is of higher importance to make the scheduling
dynamic in nature. By dynamic we mean re-allocation of
already scheduled jobs which were not completed. So change
in the resource pool can trigger running of scheduler which
can either reschedule the jobs whose resources have left the
grid or can request processing of new jobs on addition of one
or more resources or both of them. Jobs whose predecessors
is present in the set of rescheduled jobs are also rescheduled.
There is very little scope for this paper to solve the issue
where a job suffers starvation and penalty due to failure of
resource. To handle this issue accounting of Mean Time to
Failure (MTTF) with log mining can help.

C. Job Grouping for Fine-grained Jobs

Fine grained jobs are grouped to form a single job.
Following are the constraints considered while job grouping.

• Jobs grouped as single job should be of same type i.e.
either computational jobs or storage intensive jobs.

• Prevail same job precedence rule after job grouping.
Workflow and precedence of jobs is represented through
Directed Acyclic Graph (DAG), where nodes are jobs and
directed edge represents precedence.
A directed edge from a to b is drawn, when b awaits for the
completion of job a and a is said to be the predecessor of b
and b is the successor of a. Nodes having common edge are
defined as adjacent nodes. We define a, b to have same job
type if their resource type requirement is same.
Before we present our heuristic algorithm for job-grouping,
we define few terms as follows:

1) Entry job: A job without any predecessor but has
atleast one successor is called entry job. If there are multiple
entry jobs for a DAG component then we add a zero size
job/node and new directed edges are drawn from zero size
job to entry jobs. Hence we have a single entry job denoted
as jentry.

2) Exit job: A job without any successor but has atleast
one predecessor is called exit job. If there are multiple exit
jobs for a DAG component then we add a zero size job/node
and new directed edges are drawn from exit jobs to zero size
job. Hence we have a single exit job denoted as jexit.

3) Job size: Size of a computational job is mea-
sured in Million Instructions(MI) and storage jobs in
Megabytes(MB). It is denoted as job size(j)computational

or job size(j)storage.

Algorithm 2 job grouping
Input: Job pool with DAG representation

Compute critup(j)<type> for each job j according to the
equation in section III-C4
Compute critdown(j)<type> for each job j according to
the equation in section III-C4
Compute crit<type> for each job j according to the
equation in section III-C4
while Job a ∈ job pool exists, where a is unprocessed
fine-grained job do
flag ← 0
while a is fine-grained job and flag = 0 do

for each b ∈ adjacent node(a) and same type i.e.
computational or storage do

Temporary merge adjacent node b and a to form t

Calculate new critup(t)<type> , critdown(t)<type>

and crit(t)<type>

if new crit(t)<type> ≤ crit(jentry)<type> and
crit(t)<type> is minimum till now then

merge node ← b
end if

end for
if merge node is found then

Permanently merge merge node with a to form a′

Change parent and child relation accordingly
if a′ is not fine-grained job then

flag ← 1
end if

else
flag ← 1

end if
end while

end while

4) Critical length : Critical length denoted as crit(j)
refers to the longest distance from jentry to jexit passing
through the job j. There are two types of jobs viz., com-
putational intensive and storage intensive jobs. Hence we
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consider crit(j)computational, crit(j)storage accordingly for
calculation in Algorithm 2 depending on the job type.
The Upward Critical length of job j is the longest distance
from j to the exit job jexit. It is denoted as critup(j)<type>

where <type> is computational and storage. Upward critical
length is computed with the following equation starting from
jexit and moving upward towards j.

critup(j)<type> = job size(j)<type>

+maxj′∈succ(j)(critup(j
′)<type>)

Similarly, the Downward Critical length of job j is the
longest distance from the entry job jentry to j. It is denoted as
critdown(j)<type> where <type> is computational and stor-
age. Downward critical length is computed with the following
equation starting from jentry and moving downward towards
j.

critdown(j)<type> = job size(j)<type>

+maxj′∈pred(j)(critdown(j
′)<type>)

crit(j)<type> = critup(j)<type>

+critdown(j)<type>

IV. EXPERIMENT AND RESULTS

Standard grid workload from Grid Workload Archive [13]
have been used in this experiments. 60% of grid jobs have
precedence dependencies. Gridload SHARCNET and DAS-2
are the two traces that have been used for experiment. Traces
shows that execution time of jobs varies widely making
scheduler task difficult. A sample of job characteristic is
given in Table II.
The resource manager simulates the dynamic behaviour of
resources in grid. We have assumed 10% of the resources
will show anomalous behaviour; i.e. 10% of resources can
leave the grid without notifying the grid. The dispatcher
send jobs to corresponding resources and collect the results
after completion.
Our scheduler outputs a set of near optimal non-dominating
scheduling strategies based on five objectives. For our result
section equal weighted sum on each objective approach is
used to choose a schedule strategy from set of near optimal
strategies. Regarding the processing time, the scheduler can
produce scheduling strategy for 200 jobs in 21 seconds with
400 chromosomes and 200 iterations.
In any stochastic algorithm randomize function plays an
important role. A very fast random number generator
Mersenne Twister of period 219937 − 1 is used in different
parts of the code and has a better equidistibution property. It
generates integer in the range 0 to 232 − 1 and real number
range [0, 1) with a precision of 232 [25].

Table II: User job queue
JOB ID JOB SIZE TIME LIMIT JOB COST PRED ID JOB TY PE

in MI/MB in seconds in $
...

...
...

...
...

...
42 24,000 MI 63.0 5.41 29 computational
43 130,000 MI 107.0 4.86 -1 computational
44 10,500 MI 106.0 5.99 24 computational
47 530.0 MB 150.0 5.04 29 storage
48 240,200 MI 133.0 5.40 31 computational
...

...
...

...
...

...

A. Scalability

This section tests the scalable property of the scheduler
with increase in jobs and resources. Independent jobs are
considered for nullifying precedence constraint effects on
scheduling during execution.
Result given in Table III shows that irrespective of the

Table III: Scalabiltity with jobs and resources

#JOBS #RESOURCES Average Lowest Standard
Utilization Utilization deviation

10000 10 99.61 99.03 0.33
15000 10 99.94 99.47 0.16
20000 10 99.94 99.46 0.17
25000 10 99.49 98.76 0.47
10000 20 99.29 97.55 0.83
15000 20 99.92 99.33 0.18
20000 20 99.47 98.91 0.26
25000 20 99.65 99.04 0.26
10000 25 99.08 94.71 1.26
15000 25 99.69 95.99 0.86
20000 25 99.59 97.93 0.49
25000 25 99.43 98.39 0.44

large variation of granularity in grid jobs in average 99%+
utilization performance has been achieved. The scheduler
scalability has been tested with 10000, 15000, 20000, 25000
independent jobs; and on 10, 15, 20, 25 resources. This
shows that scheduler can process large amount of gridlets
and resources without compensating on the Makespan and
utilization of resources.

B. Tradeoff energy, performance and pricing

This section shows the effect of introduction of energy and
performance parameters on the scheduler. Resource configu-
ration of the machines used are given in Table IV. Result in
Table IV with 10000 jobs explains the scheduling behavior
w.r.t performance and energy consumption. Table IV shows
that very less jobs are scheduled on Pentium 4 which is
poor in performance and energy dissipation among other
resources. Now comparing resources Core 2 X6800 with
Core 2 QX6700, they have almost same MIPS specification
but Core 2 X6800 consumes less power. The scheduler have
allocated more jobs in Core 2 X6800 which is reasonable.
Same logic can be applied for resources Core i7 920 and Core
i7 3960X. They have same energy dissipation factor but Core
i7 3960X performance is better. As a consequence scheduler
have scheduled more jobs on Core i7 3960X. Best resource
of the lot is Core i7-2600. The scheduler have uniformly
distributed jobs among Core 2 X6800, Core i7 3960X and
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Table VI: Resource utilization after appending pricing model
(DAS-2)

ID Resource Pricing model Makespan % Utilization %
($/unit time)

1 Pentium 4 0.05 99.20 91.35
2 Pentium 4 0.05 97.34 90.71
3 Pentium 4 0.05 97.12 90.95
4 Intel Core i7 920 (Quad core) 0.1 99.28 89.93
5 Intel Core i7 920 (Quad core) 0.1 99.31 92.29
6 Intel Core 2 Extreme X6800 0.09 98.74 89.29
7 Intel Core 2 Extreme X6800 0.09 98.59 90.45
8 Intel Core i7 Extreme Edition 0.15 98.65 94.55
9 Intel Core i7 Extreme Edition 0.15 97.94 91.82
10 Intel Core 2 Extreme QX6700 0.165 100.00 94.28
11 Intel Core 2 Extreme QX6700 0.165 99.90 94.16
12 Intel Core 2 Extreme QX6700 0.165 98.71 94.30
13 Intel Core 2 Extreme QX6700 0.165 98.08 97.95
14 Core i7-2600 0.18 99.63 98.28
15 Core i7-2600 0.18 99.59 98.33

Figure 2: Pareto front with makespan, time targidity and
energy efficiency as objectives

Core i7-2600 to have a minimum makespan. Jobs whose
deadline are far is judicious enough to be scheduled on low
end resources.
Since workload SHARCNET has large variation in the gran-
ularity of jobs the result gives worst case analysis in their
utilization.
Now result in Table V reflects the change in scheduling

Table IV: Resource configuration for experiment
ID Machine Frequency Energy Performance Utilization or

GHz Watts MIPS/core Uptime %
1,2 Pentium 4 Extreme 3.2 92.1 9,726 33.5, 29.2
3,4 Intel Core 2 X6800 2.93 75 13,539 100.0, 99.1
5,6 Intel Core 2 QX6700 2.66 95 12,290 44.6, 47.3
7,8 Intel Core i7 920 2.667 130 20,575 50.8, 50.8
9,10 Intel Core i7 3960X 3.3 130 29,621 99.8, 98.8

11,12 Core i7-2600 3.4 95 32,075 99.8, 99.9

behavior after appending the pricing model. The result shows
that low end resources have been utilized well enough. Jobs
having low job cost or high time limit can afford to run on
these cheap resources whereas high priority jobs demanding
high performance run on costly resources. Trade off among
performance, time of execution and cost have allowed jobs
to be scheduled on various resources uniformly. In table V
& VI it is observed that resources have adhered to the

makespan and all have 98%+ execution time. Utilization
percentage shows actual uptime or running time of resources.
This reveals that all resources have been utilized properly.
Even resources like Pentium 4 have 95% utilization on
average. The utilization of resource with workload DAS-

Table V: Resource utilization after appending pricing model
(SHARCNET)

ID Resource Pricing model Makespan % Utilization %
($/unit time)

1 Pentium 4 0.05 98.01 98.04
2 Pentium 4 0.05 98.95 92.90
3 Pentium 4 0.05 98.95 96.07
4 Intel Core i7 920 (Quad core) 0.10 97.99 93.57
5 Intel Core i7 920 (Quad core) 0.10 98.00 97.52
6 Intel Core 2 Extreme X6800 0.09 98.01 97.39
7 Intel Core 2 Extreme X6800 0.09 98.92 96.83
8 Intel Core i7 Extreme Edition 0.15 98.94 93.91
9 Intel Core i7 Extreme Edition 0.15 98.92 96.85
10 Intel Core 2 Extreme QX6700 0.165 98.92 97.56
11 Intel Core 2 Extreme QX6700 0.165 98.89 98.52
12 Intel Core 2 Extreme QX6700 0.165 98.92 96.43
13 Intel Core 2 Extreme QX6700 0.165 98.92 98.11
14 Core i7-2600 0.18 100.00 97.28
15 Core i7-2600 0.18 98.92 99.16

2 is less when compared with workload SHARCNET. Jobs
in DAS-2 is more fine grained in nature and to maintain
predecessor relation among them is has to sacrifice a little on
utilization. Figure 2 shows how our scheduler gives a better
grip to the administrator to trade off between user objectives
and grid administrator objectives. Each point on the space
represents a scheduling strategy. In a 3D co-ordinate system
we represents 3 objectives which are needed to be minimized
namely (i) makespan (ii) energy efficiency parameter, (iii)
time targidity. Any point in the first pareto front can be
chosen for scheduling strategy. This gives grid administrator
wide range of choices and cope up with dynamic behaviour
of grid.

V. CONCLUSION

The main motive of this work is to provide a flexible
scheduler keeping multiple objectives into consideration.
The scheduler module yields best scheduling strategies
on various parameters in a pareto front. This is upto grid
administrator and dynamic grid environment to choose
a scheduling strategy of its choice. For experimentation
purpose we have put equal weights on each objective for
choosing best scheduling strategy.
Our results clearly shows that our scheduler produces
optimized schedule on multi-objective optimization
environment. The scheduler is scalable with resources
and can process an infinite queue of jobs. The scheduler
responded well with the change of constraints and behaviour
of grid and job model. All resources have adhered to
the makespan, and utilization rate is also high inspite of
precedence constraint. It is difficult to display minimization
of cost and time targidity parameter in graph or table.
However a live demo of search space or or pareto graph
with schedules/chromosomes on successive iteration of
genetic algorithm can verify its authenticity.
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