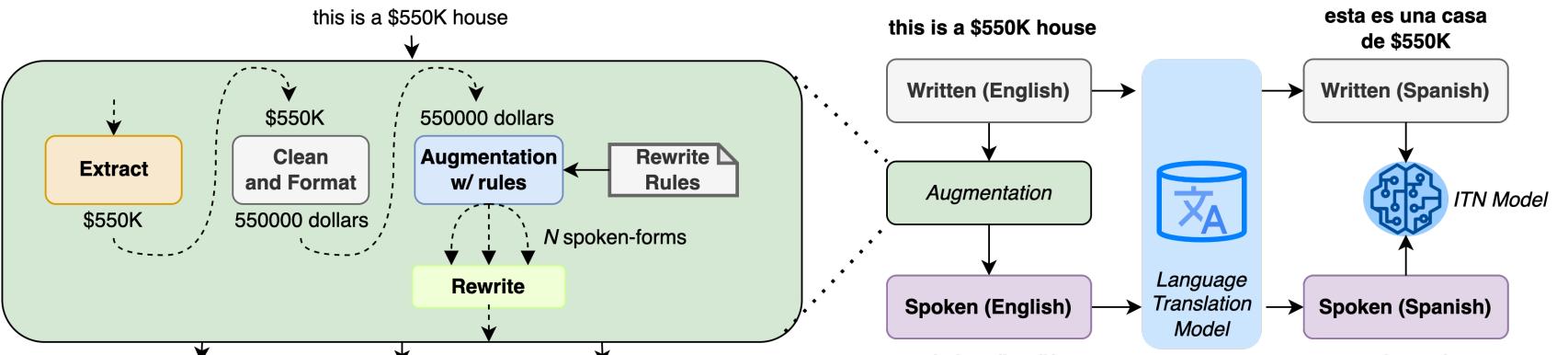


LANGUAGE AGNOSTIC DATA-DRIVEN INVERSE TEXT NORMALIZATION

Szu-Jui Chen^{1*}, Debjyoti Paul^{2*}, Yutong Pang², Peng Su², Xuedong Zhang² ON Meta Meta Meta AI AND UNIVERSITY OF TEXAS AT DALLAS

CRSS

Abstract


We propose a language-agnostic data-driven ITN framework using data augmentation and neural machine translation for real-time miniature models and low-resource languages. Our approach addresses the lack of labeled spoken-written datasets for non-English languages. Émpirical evaluation confirms the effectiveness of our approach for multiple non-English languages, even when using only English data.

Motivations

 \rightarrow The same spoken phrase can have multiple written forms depending on the context.

Methodology

We propose using NMT models to generate spoken-written text pairs in target languages for which we do not have adequate pairs.

- \hookrightarrow Difficulty in obtaining pairs covering diverse ITN entities like cardinals, ordinals, date-time, money, fractions, decimals, address, metrics, email, URL, and abbreviations.
- \hookrightarrow Variations in written-form of the same entity across languages, e.g., 3:30 pm represented as 15h30 in French.

Italian	un quarto $\rightarrow \frac{1}{4}$ or 1:15
1 CUIIUII	cinquecento dollari \rightarrow \$500
French	quatre-vingt six $\rightarrow 86$
	dix-huit trente \rightarrow 1830 or 18:30
Spanish	unocento por ciento $\rightarrow 100\%$
	veinte veinte $\rightarrow 2020$ or 20:20
German	zweihundertzweiundzwanzig $\rightarrow 2022$
	viertel vor zwanzig \rightarrow 19:45 or $\frac{1}{4}$ vor 20

Table 1. Tricky ITN examples for a few language.

Objectives

- \rightarrow We propose an augmented text normalization (TN) method for English that transforms written form texts to spoken form texts, generating more spoken-variants.
- \rightarrow We propose using neural machine translation (NMT) for internationalizing ITN models.
- \rightarrow We present a language-agnostic data-driven ITN model

this is a five fifty este es un cinco cincuenta this is a five hundred fifty this is a five hundred this is a five fifty thousand dollars house casa de mil dolares fifty K dollar house thousands dollar house thousand dollars house

Fig 1. Multilingual data generation using enhanced rule-based text normalization system and machine translation model.

Model Architecture

Two types of Encoder-Decoder model are investigated in this work: the LSTM-based Seq2Seq model and the Transformer model.

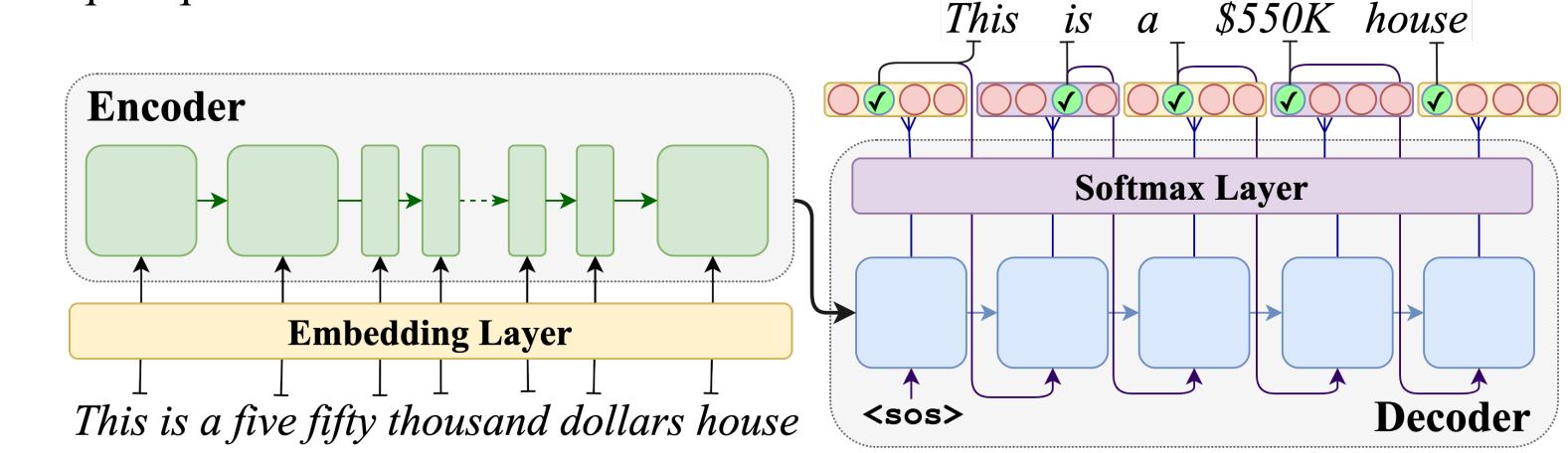


Fig 2. Encoder-Decoder model architecture for ITN.

Experiment Results

Evaluated our models on two in-house datasets.

- \rightarrow (a) Dictation test set: Human annotated 6,810 spoken-written conversational text pairs in English containing diverse ITN entities in mixed proportions.
- (\rightarrow) (b) Caption test set: Consisting of mathematical expressions, measures, metrics, phone-numbers. This dataset has [en]:22332, [es]:21216, [fr]:27300, [it]:14939, [de]:5960

for inverse normalization of spoken form texts in 12 languages. Additionally, we study system design choices in our experiment section.

Enhanced Text Normalization

- \hookrightarrow Traditional TN systems generate fixed variations of spoken forms using rule-based approaches.
- \rightarrow Spoken forms by traditional methods may lack full information about the subject.
- \rightarrow We developed enhanced TN system for English that generates a wide range of spoken forms for various entities.

Written T Input	ext Spoken Text fr Conventional T	-
\$123	one hundred twenty three dol	one hundred twenty three dollars one hundred twenty three dollar one twenty three dollars one twenty three dollarlarsone hundred and twenty three dollars one hundred and twenty three dollar one two three dollars one two three dollars one two three dollars
6:15 am	six fifteen a m	six thirty a m six fifteen in the morning six fifteen six past fifteen a m quarter past six a m quarter past six morning six past quarter morning
Table 2. Ex	amples of generated	spoken form using conventional TN system
	and our enl	nanced TN system.
Form	Translated text	
spoken	Historical average for January is thirty one degrees.	 La moyenne historique de janvier est de trente et un degrés [<i>fr</i>] La media storica di gennaio è di trentuno gradi. [<i>it</i>] La media histórica de enero

es de treinta y un grados. [es]

La media histórica de enero

est de 31 degrés. [fr]

es de 31 grados. [*es*]

Historical average for La media storica di gennaio

Table 3. Examples of data augmentation with machine translation models for

French [fr], Italian [it], Spanish [es]

January is 31 degrees. | è di 31 gradi. [*it*]

La moyenne historique pour janvier

spoken-written text pairs for respective languages.

Spoken	Written
[<i>en</i>] I found out that nine out of ten statistics are wrong.	[<i>en</i>] I found out that 9 out of 10 statistics are wrong.
[fr] J'ai découvert que neuf statistiques sur dix sont fausses.	[fr] J'ai récemment découvert que neuf (9) statistiques sur 10 sont fausses
[en] Dad's surprise sixtieth is on this Saturday.	[en] Dad's surprise 60th is on this Saturday.
Arrive before six PM.	Arrive before 6 PM.
[<i>fr</i>] La soixantième surprise de papa a lieu ce samedi.	[<i>fr</i>] La 60ème surprise de papa a lieu ce samedi.
Arrivée avant 18h (dix-huit heures).	Arrivée avant 18h.

Table 4. Examples of errors for ITN evaluation. The second row is an example of ITN error while the third row is an example of NMT error.

Language	en	es	fr	it	de
Monolingual	63.70%	64.51%	55.24%	57.57%	48.10%
Monolingual 12-language	64.74%	65.58%	54.90%	56.77%	50.19%

Table 5. Normalized accuracy of monolingual and	
12-language model on the Caption testset.	

Arch.	NMT	es	fr	it
Seq2Seq	In-House NMT	78.09%	62.99%	71.42%
Seq2Seq	Opus-MT	71.11%	60.03%	55.89%
Transformer	In-House NMT	72.55%	57.27%	64.76%

 Table 6. Normalized accuracy with architecture and
 translation tools on 3-langs ([es], [fr], [it]) model and SPM token size of 20,000 on the Dictation testset.

Language	Monolingual	3-languages	6-languages	12-languages	ITN entity translation accuracy.
<u>es</u>	79.15%	78.09%	76.80%	75.17%	91.34%
fr	62.35%	62.99%	60.98%	60.07%	62.81%
it	70.71%	71.42%	69.96%	69.87%	76.02%
en	71.73%	-	72.75%	71.96%	_
ru	68.39%	_	64.66%	66.33%	82.86%
kk^{\dagger}	0.03%	_	37.69%	32.41%	99.63%
tr	60.07%	_	_	53.95%	46.19%
de	68.24%	_	_	63.74%	61.67%
el	66.84%	_	_	65.29%	64.64%
ist	48.50%	_	_	61.75%	99.36%
af^{\dagger}	29.21%	_	_	50.51%	96.45%
ta^{\dagger}	25.63%	_	_	27.30%	99.74%

†low resource languages.

Table 7. Normalized accuracy of monolingual and multilingual models on the Dictation testset.

Conclusions

 \rightarrow A single 12-language model can substantially improve the normalized accuracy of low-resource languages while maintaining good performance for high-resource languages. \rightarrow Adding training data from the same script can improve the model performance on low-resource languages.

* Authors with equal contributions.

written