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ABSTRACT
With the widespread growth of various social network tools and
platforms, analyzing and understanding societal response and crowd
reaction to important and emerging social issues and events through
social media data is increasingly an important problem. However,
there are numerous challenges towards realizing this goal e�ec-
tively and e�ciently, due to the unstructured and noisy nature of
social media data. �e large volume of the underlying data also
presents a fundamental challenge. Furthermore, in many applica-
tion scenarios, it is o�en interesting, and in some cases critical, to
discover pa�erns and trends based on geographical and/or temporal
partitions, and keep track of how they will change overtime.

�is brings up the interesting problem of spatio-temporal sen-
timent analysis from large-scale social media data. �is paper in-
vestigates this problem through a data science project called “US
Election 2016, What Twi�er Says”. �e objective is to discover sen-
timent on Twi�er towards either the democratic or the republican
party at US county and state levels over any arbitrary temporal
intervals, using a large collection of geotagged tweets from a period
of 6 months leading up to the US Presidential Election in 2016. Our
results demonstrate that by integrating and developing a combi-
nation of machine learning and data management techniques, it
is possible to do this at scale with e�ective outcomes. �e results
of our project have the potential to be adapted towards solving
and in�uencing other interesting social issues such as building
neighborhood happiness and health indicators.
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1 INTRODUCTION
Since the inception of Twi�er, people have been using the platform
to express their opinion about current a�airs, politics, business,
sports, �nance and entertainment. �ere are studies with statistics
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Figure 1: Popularity of Republican (Red) and Democratic
(Blue) parties at US county level returned by Compass for a
query time interval; http://www.estorm.org.
[36] showing that twi�er is being used predominantly by people of
age under 30 and the voice of young generation ma�ers in paving
road to the future of any country. Growing social media usage
coupled with enhanced computing technologies have enabled us to
analyze peoples opinion from their tweets at a large scale. An event
like election that a�racts the interest of crowd and has signi�cant
impact on society is worth analyzing.

In this work we provide a framework to analyze the sentiment
of the masses in spatio-temporal domain for any topic of interest.
In particular, we used the US Presidential Election 2016 as a con-
crete example and analyzed the sentiment of crowd regarding this
election. Masses express their feelings in tweets thus making it a
valuable source of peoples true opinion. �e vast amount of raw
data that is generated in Twi�er during an important and long
event such as a Presidential Election poses a unique challenge to
gather, analyze and extract information. Furthermore, people are
inquisitive about the popularity of political parties with respect to
geographical location; also about how breakout events, news and
media a�airs change the masses sentiment over time.

Using the Twi�er stream as our primary data source and restrict-
ing ourselves to geo-tagged tweets, we developed a Sentiment Anal-
ysis framework to analyze and visualize large spatio-temporal data.
We dub the framework Compass, which stands for Comprehensive
Analytics on Sentiment for Spatiotemporal Data. Compass facil-
itates the end user to select an arbitrary time range to visualize
popularity of the two political parties for each county (or state)
of US for the speci�ed time range. Alongside we present a bursty
event detection technique to capture major event or subevents that
happened before the US election. �e objective is to capture the
reaction of people on such events early in the process.

�e Compass framework is generic where specialized machine
learning models can be integrated to do speci�c task. For election
analysis we deployed machine learning and deep learning models

http://www.estorm.org


Figure 2: Bursty event timeline and brush selection for time
range based analysis (gray window is a query time range).
with minimal human involvement to obtain highly accurate results.
�e main modules of Compass include:

(1) Tweet Classi�cation Model;
(2) Sentiment Analysis Model;
(3) Bursty Event Detection Module;
(4) Spatio-temporal Analysis Framework;
(5) Visualization.

�e integration of these modules enables an e�ective end-to-end
analysis of spatio-temporal sentiment analysis over large spatio-
temporal data. In the context of US Election, Republican and Demo-
cratic are two major US political parties. Figure 1 shows the popu-
larity of the two parties at US county level based on the sentiment
score for a queried time range returned by Compass. Red color
counties indicate a higher sentiment score for the Republican party,
whereas blue color counties favor the Democratic party.

�e line charts with red and blue lines in Figure 2 represent the
bursts of tweets about Republican (red) and Democrats (blue) as
identi�ed by Compass. Tweet bursts are mapped with the grand-
truth events happened during that time. �e positive vertical-axis
represents a surge of positive sentiment tweets and the negative
axis represents a surge of negative tweets about that party. �e red
and blue circle in Figure 2 are the events related to either Republican
or Democratic party respectively. Compass has accurately detected
all important surges related to signi�cant events happened during
the course of the election season. For example, the �rst red circle
represents the event of the Republican national convention in Cleve-
land, it in�uenced positive reaction among republican supporters
which can be seen with a positive red line surge in timeline.
Compass architecture. Figure 3 presents an overview ofCompass’
architecture. �e framework starts with the collection of geo-tagged
tweets from Twi�er APIs. �ese geo-tagged tweets are passed
through the tweet classi�cation model where non-political tweets
are rejected from further processing. For each political tweet the
classi�cation model has classi�ed, the module also returns a proba-
bility of it being republican-related or democrat-related tweet. Next
the sentiment model measures the polarity of each tweet and assigns
a sentiment score in the range [0,1]. �e geo-mapping module maps
each tweet to a US county based on its geotag value. If the tweet is
from non-US origin, we assign it to the country its geotag value is
associated with. A�er political a�liation and sentiment score are
assigned to tweets, they are persisted in the backend database. �e
spatio-temporal online analytical system module and the bursty
event detection module utilize this database to enable end users to
interact with Compass through its frontend visualization layer.

Figure 3: Architecture overview of Compass.
�e bursty event detection module calculates a continuous burst

score for the speci�ed query time range. We have built a web-based
visualization layer with javascript and D3.js interacting with the
backend via RESTful APIs. �e spatio-temporal analytical module
with RESTful APIs calculates an aggregated sentiment score for
each county based on end user’s requests. Detailed discussion on
each module is given in Section 3.

�at said,Compass’s tweet classi�cation model uses li�le amount
of input from human and achieves high accuracy. A pipeline of two
classi�ers is used to �rst detect whether a tweet is related to politics
and then to detect the political a�liation. While the �rst model pre-
dicts the relevancy of a tweet to politics, the second model takes the
tweets that are classi�ed as political by the �rst model and detects
the political a�liation. We describe more about the architecture of
political tweet classi�er in Section 3.2.

Compass’s sentiment model measures the polarity of a tweet
and maps it to a sentiment score value in [0,1], where values close to
0 is considered very negative and values close to 1 being strongly
positive. Tweets with values around 0.5 are considered neutral.
We trained the sentiment analysis model on our twi�er data and
obtained high accuracy with deep learning methods and fas�ext
[23]. We present the architecture of this model in Section 3.3.

�e bursty event detection module leverages a novel bursty
model with a strong mathematical interpretation that we have
developed. �e de�nition of burst is di�erent from the concept of
trending where in later the number of tweets ma�ers. Bursty events
gain popularity in a short time but might not be prevalent for longer
time hence usually get overlooked by trending topics. Bursty events
are important in capturing emerging topics and developments in
spatio-temporal data and applications. Our bursty model is built
over a novel mathematical model and has successfully detected
signi�cant events/sub-events which are bursty in nature.

�e rest of the paper is organized as follows. Section 2 surveys
related works. Section 3 presents the design details of Compass’s
multi-classi�cation model, sentiment model, bursty event model,
spatio-temporal processing module, and its visualization layer. A
comprehensive experimental evaluation is provided in Section 4 to
validate the design of Compass and its e�ectiveness. We conclude
the paper with some �nal remarks in Section 5.



2 RELATEDWORK
Next we brie�y discuss approaches related to tweet topic classi�ca-
tion, sentiment analysis (in general), and bursty event detection, as
well as sentiment analysis for US election.
Tweet classi�cation. Our political tweet classi�cation starts with
preparation of a training data set where we use topic modeling
to learn about political words. Unsupervised methods for topic
modeling using Latent Dirichlet Allocation (LDA) [7], pLSA [19]
and modi�ed versions of them are state-of-the-art methods [1, 3,
6, 42]. Scalable topical phrase mining from text corpora [14] uses
LDA to predict high quality topics using phrases. More recent
work TweetSi� [28] uses external knowledge base and their own
word embedding model to classify tweets. Word2vec [32] word
embedding model computes vector representations of words. In our
work word2vec plays a role in enriching our political keywords set.
Godin et. al. [17] uses LDA and sampling to recommend hashtags.
LDA performs well for documents of considerable size but faces
limitations with microblogging and tweets [47]. Our method uses
LDA on news articles and word embedding model trained on twi�er
data to create a much richer set of keywords. Logistic Regression,
Support Vector Machine (SVM), Naive Bayes is used predominantly
for text classi�cation [15, 22, 30].
Sentiment analysis. From past decade opinion mining on text
data has been a popular research topic. Pang et. al. [35] gives a
comprehensive survey on incipient opinion mining research. Twit-
ter sentiment analysis with machine learning approaches like SVM
[21], lexicon based [38], LDA [13, 26] and neural network [12, 39]
etc. Vosoughi et. al. [41] used contextual linguistic feature to do
sentiment analysis. More recent methods include sequence process-
ing techniques with Recurrent Neural Network (RNN) [27] variants
like Long Short Term Memory (LSTM) [18], C-LSTM [48]. FastText
[23] proved to be a very e�cient and accurate technique for senti-
ment analysis. Stanford twi�er sentiment corpus [16] is a standard
dataset that we used to evaluate our models.
Bursty event detection. “Rising sharply in frequency” is de�ned
as burst by Kleinberg [25]. Zhu et. al. [49] modeled “bursts” as
cumulative average of frequency over sliding windows of di�erent
size. �ey applied Haar wavelet decomposition as their basis to
detect “bursts”. Shamma et al. [37] de�ned peaky topics which
is modeled with normalized term frequency score. Lu et al. [29]
de�ned trendy topic with a variant of Moving Average Convergence
Divergence prediction method to �nd trending score. Al Sumait
et al. [2] and Cataldi et al. [10] used window based approach with
online LDA and aging theory respectively. Xie et al. [46] is the
only work in document stream domain, de�ned “bursty” as rate of
incoming stream over time. �ey have used idea of acceleration
and Exponential Moving Average to model bursty topic. Our work
is di�erent in the aspect of modeling “burstiness” measure and also
provides novel data structure to perform “bursty” queries over an
arbitrary query sliding window on large historical data.
US election. To the best of our knowledge, few scholar publica-
tions [4, 9] have used opinion mining on Twi�er to analyze US
election. However their aim is to predict the popular votes and bias
without involving spatial and temporal distribution of twi�er data.
Bovet et al. [9] build a twi�er user network and used their tweets
hashtag to �nd the opinion about the user. Our work is di�erent

in the sense of building a spatial-temporal sentiment map through
the Compass framework for the US Election 2016.

3 THE DESIGN OF COMPASS
3.1 Twitter Geo Data Collection
We collected geo-tagged tweets from two APIs of Twi�er. One
is the 1% streaming API and the other one is the location based
search API. From the 1% streaming API we only �lter tweets with
geo-location. For the location API, partitioning search locations and
prioritizing the number of queries to di�erent partitions to collect
the maximum number of tweets is essential, for example, New York
City is more likely to generate more tweets, and at a much higher
frequency too, than a small town in southern Utah. We partition
the global map into disjoint bounding boxes, where each bounding
box represents a query region to twi�er’s location based search API.
�e naive approach is to send queries for these bounding boxes to
the location based search API in a round robin fashion. But that
clearly doesn’t re�ect dramatic di�erence in terms of data arrival
rates at the regions represented by these bounding boxes. We can
not only collect more tweets, and but also re�ect the data arrival
rates more accurately if we predict the boundaries of the bounding
boxes of search and the frequency of queries for each bounding box
to make, based on the geo-location statistics from the geo-tagged
tweets. �at said, we collected 7 days of tweets from the 1% API to
get the geo-location statistics, from which we derived a partitioning
strategy so that bounding boxes are of di�erent geometric size and
guarantee that the data arrival rate of each bounding box is roughly
the same. We also decided the query frequency of each bounding
box based on the statistics in a multi-threaded environment, which
helps avoid the rate limit error resulted from exceeding the query
rate constraint enforced by Twi�er . Collected geo-tagged tweets
from the two APIs are streamed to di�erent services and stored in
a backend database.

Since we have to deal with a large amount of tweets, and tweets
are represented in Json format, we have used a clustered Mon-
goDB instance as our backend database. �e MongoDB instance is
running over a cluster of 16 nodes.

3.2 Political Tweets Classi�cation
In order to distinguish tweets related to politics from non-political
ones and then subsequently to �nd the particular political align-
ment, a semi-supervised approach is adopted. Our focus primarily
is to use minimal human input to design a system that can perform
the aforementioned classi�cations with good generalization.

Using just a list of keywords that can detect politicalness and
the political leaning of a tweet will not be feasible because of two
reasons. �e �rst reason being the infeasible task of storing the list
of political a�liation keywords given the volume with which new
content is generated on Twi�er. Secondly, even keyword �ltering
does not guarantee correct classi�cation since tweets matching
with keywords might have di�erent context all together and hence
can lead to false classi�cation. On the other hand, many machine
learning methods need a properly labeled dataset to train a model.
But preparing such dataset is manual labor intensive and can be very
time consuming depending on the size of the dataset. Henceforth,



Compass uses semi-supervised techniques to prepare its training
data for building its political tweets classi�cation module.

�e two important parts of the module are training data prepara-
tion and creation of classi�cation model. �is approach is generic
and can work with any topic e.g. politics, sports, �nance etc.

3.2.1 Training Data Preparation. Initially, we collect news arti-
cles from well known news sites such as NYTimes, Fox News, CNN
etc. A news crawler module with python scrapy and splash has been
used to collect articles and sanitizing them. �e scraped articles
have the structure given in Listing 1.

1 {"article": "text .....", "author": "author name",
2 "date": "2016-08-04", "focus": "description",
3 "link": "http://...", "origin": "NYTimes",
4 "title": "news title"}

Listing 1: Article structure.
�ese articles are then fed to a Latent Dirichlet Allocation (LDA)

topic modeling algorithm to �nd the keywords related to politics.
Our hypothesis is that US politics can be represented as a multino-
mial distribution of words that are o�en associated with it. Another
assumption is about the issues involved and being discussed about
speci�c US political parties. E.g. In Election 2016, email scams
is a topic related to Democrats; similarly federal tax pay is o�en
associated with a Republican subject (Donald Trump refused to
release his tax return).

Figure 4: Training data preparation in Compass.
Using the LDA [7] model on articles collected over a period of

one month from July 2016, we obtained keywords associated with
US politics. We named/treated this set of keywords as seeds. Since,
the lingo used in news articles is di�erent from Twi�er , this Seeds
list in its current form would not be of much help in classifying
tweets. Hence, to address this problem, we make use of Word2Vec
[32, 33], another unsupervised method, to embed the words in a
dense semantic space. We trained ourword2vec model on a snapshot
of Twi�er data with 8.5 million tweets from the month of July, 2016
to �nd similar words to our existing seeds in the semantic vector
space. For each seed word, we �nd its k nearest neighbors using
cosine distance and add them to a new list called Enriched Keywords
if they are not already present. �is enables us to extend our seeds
list to a more comprehensive list; see Figure 5. A sample of such
enriched keywords is given in Table 1.

Even though the nearest neighbors method gives a very good list
of enriched keywords, since Word2vec models global context, there
will be some noisy words in this list, hence Compass makes use of

Party Keywords
Republican gopfail, gop’s, BoycottTrump,

GoTrump,LockHimUp, evangelical, gopers,
imwithhim, donthecon, maga, PRyan,
MittRomney, ColoSenGOP, TheFloridaGOP,
ChrisChristie RealBenCarson,GovPenceIN, etc.

Democrat jillnothill, HillaryForAmerica,
imnotwithher, huma, obamas,
NotReadyForHillary, imwithhernow,
hillaryforprison, Flotus, killary,
Libtarded, berniesellsout, lnyhbt,
hillarysliesmatter, turncongressblue, etc.

Table 1: Enriched keywords with political a�liation.
domain experts to re�ne this list and also to provide the political
a�liation of the entire keyword set. In total, we have around 300
keywords labeled by the experts.

Compass makes use of this labeling in its classi�ers to learn the
political a�liation and this the only part where Compass needs
manual labeling guiding the training of classi�ers. Note that in the
subsequent sections, we also use manual labeling through crowd-
sourcing and already-labeled datasets, but we use them for the eval-
uation of Compass’ classi�ers, rather than building its classi�ers.

Now from the tweet database Compass is able to �lter out tweets
having the keywords and label them with Democrat, Republican or
both based on the a�liation of keyword. It labels the tweets that
does not have any of these keywords as non-political, and further
remove tweets labeled both democratic and republican since, the
assignment of sentiment would become ambiguous in such cases
and may require aspect based sentiment analysis which is le� as
an interesting future work. Figure 4 summarizes the construction
of training data preparation in Compass.

3.2.2 Classification Model. �is labeled data is now used as the
training data to train the classi�cation model. Keeping track of a
large number of new keywords related to politics that would be
created by Compass’ data collection and training data modules on
a daily basis would be both infeasible and costly. Hence training a
machine learning classi�er using aforementioned labeling as the
ground truth would obviate the need for updating the keywords on
a daily basis. We remove the keywords from our tweets during train-
ing to prevent the classi�ers from learning the keyword-presence
as a feature. �is also ensures that our trained models will be gen-
eralizable to unseen tweets. We use two classi�ers to classify a
tweet �rst into political or non-political and then to �nd the political
a�liation. �at said, Compass’ classi�cation model is a set of two
linear classi�ers with the �rst one classifying a tweet into political
or non-political classes and the second one detects the political
a�liation depending on the output of the �rst one.

For both of these purposes Compass uses linear classi�ers like
SVM and Logistic Regression. We have followed multiple approaches
to validate our model and make sure that it’s generalizable beyond
the keywords it has seen during training. Hence we report the
performance of both models on two di�erent sets of tweets in the
political a�liation classi�cation. �e �rst one containing the key-
words collected earlier and a second set of manually labeled tweets
using a crowdsourcing layer developed for Compass.



Figure 5: Red node keywords are seeds and blue node keywords are derived from seeds using cosine distance.
3.3 Sentiment Model
Once tweets are classi�ed into either democrat-related or republican-
related groups, Compass uses a sentiment analysis model to �gure
out whether a particular tweet in a group is for or against that group.
For example, Go Hillary. I’m with her! will be classi�ed into the
Democrat group, and its sentiment score will be close to 1; whereas
Email leak is a crime! will also be classi�ed into the Democrat group,
but with a very low sentiment score.

Compass leverages the Stanford Twi�er Sentiment (STS) corpus
created by Alec Go et. al.[16] using Distant supervision to train
and validate its sentiment analysis classi�er. Di�erent machine
learning algorithms, including the classical approaches like Naive
Bayes, Logistic Regression, SVM and the more advanced and recent
algorithms like LSTMs and fas�ext, can be used.

3.3.1 LSTM-RNN. RNNs[31] di�er from traditional neural net-
works fundamentally due to “hidden states” that maintain informa-
tion about the the previous inputs. �e hidden state of an RNN at
time t is not only dependent on the input at t but also on the hidden
state or memory at t − 1. Since the parameters of the network are
shared across all the timesteps, the gradient at each timestep also
depends on previous time steps and uses Backpropagation �rough
Time (BPTT) for training.

LSTMs[18] are special kind of RNNs designed to capture long
term dependencies by overcoming the vanishing gradients problem
of RNNs. LSTMs improve upon standard RNNs by having the ability
to remove or add information in hidden cell state with the help of
three gates called the Input, Forget and Output gates. �e hidden
state h is at time t is calculated in the following fashion:

it = σ (xtUi + ht−1Wi ), ft = σ (xtUf + ht−1Wf )

ot = σ (xtUo + ht−1Wo ), ct = tanh(xtUc + ht−1Wc )

mt =mt−1 ◦ ft + ct ◦ it , ht = ot ◦ tanh(mt )

where it , ft and ot are the input, forget and output gates at
time t respectively, ct is the candidate hidden state andmt is the
internal memory of the LSTM cell at time t . U andW are the input

to hidden state and hidden state weight matrices respectively; xt is
the input vector at time t . While the input gate controls the amount
of newly computed state for the current input the network passes
through, the output gate regulates the amount of hidden state to
share with the next timestep. �e forget gate in�uence how much
of the previous memory we should remember at this time step. �e
candidate hidden state c is calculated using the current input and
previous hidden state while the current memorymt is computed
using the previous memory and the current input. Since LSTM
memory units allow the previous state to pass through to the next
time step, they don’t su�er from the vanishing gradient problem.

In our case, Compass trains a word2vec model on the Twi�er
sentiment corpus to represent each word as a dense 50 dimensional
vector. It passes the matrix of words and embeddings of dimensions
vocabulary size × 50 to an embedded layer which will �ne tune
the word vectors during the training phase. An LSTM layer with
100 hidden units is added. �e output of this layer is connected
to a single neuron with sigmoid activation. We optimize for cross
entropy loss using adam [24] optimization algorithm. �e model is
validated with various dropout ratios to improve regularization.

3.3.2 FastText. �e fastText[8, 23] model architecture takes the
sentence represented as n-gram features and embeds these features
using a embedding layer. �e embeddings of the n-gram features
are then averaged to form the �nal representation of the sentence
and are projected onto the output layer. �is model proved to be
very fast and achieved results comparable to state of the art in many
datasets across di�erent domains.

Compass represents each tweet as a combination of unigrams
and bigrams by appending the bigrams a�er the unigrams. For
example, if a tweet is “Vote for Hillary Clinton” and “Hillary Clinton”
is in our list of bigrams, then the tweet would be represented as
[‘Vote’, ‘for’, ‘Hillary’, ‘Clinton’, ‘Hillary Clinton’] in Compass.
�is vector would then be sent to the embedding layer to learn the
representation for each n-gram. �ese representations are averaged
and projected to the output layer with a single neuron and sigmoid



activation function. We optimized for binary-crossentropy using
the same adam optimizer as mentioned in the LSTM model above.

3.4 Geomapping Module
Peoples opinion and a�itude towards public events always varies
with region. When one local event happens, it usually results
into wider range of discussion and news. To analyze geographic
properties of opinions from twi�er, we use geotagged tweets as
mentioned earlier. Mapping of geotagged tweets to counties is
important for faster processing. �ere are online services for this
purpose, e.g., Google provides a Geocoding web service for it, but
this is not feasible for large scale processing. Instead, Compass uses
high precision GeoJSON i.e. geospatial data interchange format
(RFC 7946)[20] to delineate geo-features. We use e�cient ray-
tracing technique to �nd a point within a featured polygon. A
geo-tree based approach with country→ state→ county as nodes
at each level provides signi�cant pruning power and saves costly
comparison signi�cantly. �is also increases the throughput of
Compass. To further improve scalability and throughput, we extend
the above idea to a distributed and parallel se�ing. In particular,
we have integrated the above Geomapping Module into Simba [45],
a spatio-temporal analytical engine built over Spark SQL.

3.5 Bursty Event Detection in Compass
�e impact of any political event can be noticed by its popularity
both in positive and negative sense. Popularity is a vague term
associated with event. In social media trending is a term used where
number of people talking about a event is considered as parameter.
�ese events usually gains a�ention over a considerable amount
of time. Another type of popularity is measured when an event
gets tremendous response from people but only for a small period
of time. But sometimes they get overshadowed by trending ones
since the number of people involved over an extended period might
be considerably less. �e la�er type needs proper mathematical
model to measure its popularity. If properly modeled, it can also
detect the events that can be trending in future. We call this type
of events as bursty events in�uenced from the phenomenon Burst.

It is also noticeable that there is o�en a “spatial locality” e�ect,
where an event usually �rst becomes popular in local area, then in
the state and the whole country. If we can capture the bursts at a
local area then we are a step ahead in detecting it. Hence capturing
bursty local events is critical in large spatial data.

�at said, to the best of our knowledge, we found there is lack
of proper consensus on the de�nition of burst in various literatures.
We present the mathematical model of burst by leveraging intuitions
from classic physics. In the experiment and result section we show
how our bursty model is e�ective for elections, where every now
and then election campaigns generate interesting stories. Such an
event creates sentiment waves among the crowd on Twi�er. It

is quite interesting to analyze peoples reaction especially in the
event of election where peoples opinion ma�ers and change over
time with the development of new events.

De�nition 1 (Burst). Burst is a phenomenon identi�ed when at
least n number of event occurrences (of the same event) happens in
τ time where τ is determined from probability distribution of gaps
between occurrences.

Figure 6: �e de�nition of burstiness.
Note that in the context of Compass, an event occurrence refers

to the fact that a particular political story/event is mentioned by a
tweet in a tweet stream. Con�guring n and τ parameters depends
on the type of stream. However with our formulation we could
reduce the number of parameters to one threshold parameter. For
Gamma Ray Bursts the typical average time-span is 10 seconds
[44] and the typical bursty event in social media is more than 15
minutes. We can con�gure τ with such values depending on the
type of bursts we want to capture. We introduce ν as the average
inter-event occurrence gap, which is numerically ν = τ/n.

Let Se = {a0,a1,a2, . . . ,am−1, am , . . .} be a data stream of mi-
croblog article ai about the same event e each with timestamps
t0 < t1 ≤ t2 ≤ . . . tm−1 ≤ tm ≤ . . . respectively. Note that they
may occur sporadically along the time dimension, i.e., the gap be-
tween ti and ti+1 is an arbitrary values depending on the timestamp
value of the occurrences of ai and ai+1.

We de�ne term surge st,τe of the event e at a timestamp t be-
tween two occurrences ai−1 and ai with Holt’s Linear method of
Exponential smoothing as follows.

st,τe =




1
τe if t is 0
α (t )sti−1,τe + (1 − α∗) 1

τe , if t is ti
α (t )sti ,τe otherwise

where 0 ≤ α ≤ 1.
In the above de�nition, α is a the smoothing parameter, hence, α

is time-variant and a smoothing variable, we de�ne α (t ) and α∗ as:

α (t ) = e−
t−ti−1
νe ;

α∗ = e−
t−ti−1
νe = e−1 where t − ti−1 = νe

where ti−1 is last timestamp of the occurrence of e before time t
(i.e., ai−1, the (i-1)-th article with mentioning of e), νe is average
inter-event occurrence gap of event e (which is a constant de�ned
by τe/ne ), and t is the current query time. Note that for a given
event e , τe is a user-de�ned constant and ne is also a constant that
captures the average expected number of occurrences of e with a
timespan of τe . Lastly, Se is extracted from a stream S that has a
mixture of microblog articles with mentioning of di�erent events.

Next, we introduce burstiness of an event as a continuous mea-
sure of burst over time.



Figure 7: Burstiness captured by Compass: www.estorm.org.
De�nition 2 (Burstiness). We de�ne burstiness of event e at time

t as area under the curve of surge over time τe . More area under
curve indicates substantial bursts:

bt,τe =

∫ t

t−τe
st,τe dt .

�e intuition of this de�nition is to measure the magnitude
of bursts of event e in a window of size τe de�ned at time t , as
illustrated in Figure 6. �is constitutes the core of bursty event
detection in Compass. Two types of query can be invoked:

(1) Qe,[star t,end] where e is an event type represented by a
keyword and [start , end] de�nes a query time window.

(2) Q[star t,end],γ where γ is a threshold.
�ery 1 returns st,τe and bt,τe streams for e where start ≤ t ≤

end . �ery 2 returns all elements whose bt,τe value has exceeded
threshold in interval [start , end].

�ere is also an event discovery module that cluster incoming
tweets into di�erent event groups. �e details of which are omi�ed
for the interest of space. Lastly, computing st,τe and bt,τe values at
arbitrary timestamp t exactly is expensive, especially in streaming
se�ing. We have designed e�cient approximation algorithms based
on the idea of sketching, by extending classic sketching algorithms
such as Count-Min (CM) sketch [11] and persistent CM sketch
[43], which provides high quality approximations with theoretical
guarantees. �e technical details of which are beyond the scope of
this paper and will be presented in a follow-up work.

�at said, these components form an end-to-end pipeline for
e�cient bursty event discovery in Compass. It takes tweets stream
as input and reports surge and bursts measure of positive and neg-
ative sentiment tweets for both US parties with associated events,
and it is able to map these bursts to speci�c geo-temporal regions
of interest. For example, Figure 7 shows how news of newly re-
leased emails of Hillary Clintons on 10th of August creates positive
e�ect on republicans. Similarly in early September when Clinton
Calls Many Trump Backers ‘Deplorables’ democrats received harsh
criticism. More detailed results are presented in Section 4.

3.6 Support for Spatio-temporal Analytics
It is critical for Compass to provide a fast online spatio-temporal
analytical processing unit, since large social media data with spatio-
temporal features is ubiquitous. �us, it is important to provide
fast, scalable, and high-throughput spatial and temporal queries
and analytics for location-based services (LBS). Traditional spa-
tial databases and spatial analytics systems are disk- based and
optimized for IO e�ciency. But increasingly, data are stored and
processed in memory to achieve low latency, and CPU time be-
comes the new bo�leneck. Furthermore, as data size continues

to grow, scale-out to a cluster of nodes is almost a required step
towards realizing these goals. Compass integrates and uses Simba
(Spatial In-Memory Big data Analytics) [45] that o�ers scalable and
e�cient in-memory spatial query processing and analytics for big
spatio-temporal data.

Simba is a distributed in-memory spatial analytics engine based
on Apache Spark. It extends the Spark SQL engine across the sys-
tem stack to support rich spatial queries and analytics through both
SQL and DataFrame query interfaces. Compass use HTTP RESTful
API interface interacting in SQL with Simba. We leverage Simba’s
native distributed indexing support over RDDs and e�cient spatial
operators to do analytics. Simba extends Spark SQL’s query opti-
mizer with spatial-aware and cost- based optimizations to make the
best use of existing indexes and statistics. Simba enables Compass
with the �exibility and e�ciency for analyzing geomapped data.
Compass extends Simba with the support for temporal queries, and
can process millions of tweets in some mini-seconds.

An interactive web visualization system build with D3.js for
election sentiment map provides user a nice and intuitive visual-
ization interface to analyze US election in the limelight of tweets
(h�p://www.estorm.org). Let ρ be a probability threshold value for
relevance/a�liation of a tweet with a particular party, β be a senti-
ment score threshold value, s and e be the start and end timestamps
for a query time range, CD and CR be the class of tweets related to
democrat and republican respectively, b is �ag to indicate democrat
or republican, and B is a query spatial region (represented by a
bounding box B). �rough the visualization layer, users are able to
execute spatio-temporal analytical queries like :

(1) Q+ (ρ, β, s, e,b,B). �is query �nds all tweets from region
B occurred within the time range [s, e], and each tweet a
satis�es Pr[a ∈ CD ] > ρ if b = 0 or Pr[a ∈ CR ] > ρ if
b = 1, and sen(a) > β (sen(a) is the sentiment score of
a). An aggregate version of this query returns the count
and the average sentiment score of such tweets, grouped
by each county falling within B.

(2) Q− (ρ, β, s, e,b,B). �is query is the same as Q except that
it �nds tweets with “negative” sentiments, i.e., all tweets
such that sen(a) < β . A similar aggregation version also
exists.

(3) Q± (ρ, β+, β−, s, e,b,B). �is query combines Q+ and Q−
using two sentiment score thresholds β+ and β− respec-
tively, and its aggregation version estimates the popularity
of all parties by weighted average method for all counties
a�er applying the �ltering criteria mentioned in previous
queries.

4 EXPERIMENT AND RESULT
Using its twi�er geo data collection module as described in Section
3.1, Compass has collected 286 million geotagged tweets from June
3rd, 2016 to October 30, 2016 which amount to 989GB. Among these
tweets, Compass has identi�ed approximately 2 million geo-tagged
tweets related to US politics using its tweet classi�cation module as
described in Section 3.2. Among them, 822,062 tweets are labeled
republican related, and 702,042 tweets are labeled democrat related,
and the rest has no strong relevance with either party. A sentiment
score is assigned to each tweet based on the sentiment module
presented in Section 3.3 and all tweets are mapped to a US county

www.estorm.org
http://www.estorm.org


(or a country if it is outside the US) based on the geo-mapping
module in Compass (Section 3.4). Spatio-temporal bursty detection
over these tweets is supported by the bursty model and computation
detailed in Section 3.5. Lastly, a visualization that supports spatio-
temporal analytics as introduced in Section 3.6 is presented through
a web interface, available at h�p://www.estorm.org.

To validate the design of Compass and investigate the e�ec-
tiveness of its core components, we have conducted an extensive
experimental evaluation using the above data set.

4.1 Tweet Classi�cation
4.1.1 Political vs Non-Political tweet classification. As the boot-

strap method in Section 3.2 shows, we obtained enriched Keywords
with LDA and Word2Vec. Given these keywords, we build a basic
�lter to distinguish Political tweets and Non-Political tweets. A
tweet which contains any keyword is regarded as a political tweet.
However this basic �lter would fail when a new political tweet
arrives without any previously identi�ed political keyword in it.
To solve this problem, we build a binary classi�er to obtain be�er
performance in general.

With the basic �lter, we obtain around 1.5 million of geo-tagged
political tweets. To make the dataset balanced, we pick around 1.5+
million of non-political tweets randomly and add them to the data.
We created training and testing data used an 80-20 split.

We instantiate and develop the classi�er in Section 3.2 based
on text classi�ers like SVM and Logistic Regression (LR) to detect
whether a tweet is political or non-political; they are denoted as
POLM1 and POLM2 (POLM stands for POLitical Model) respectively.
For each model, two sets of features are tried: one is unigram and
the other is the combination of unigram and bigram. As shown in
the Table 2 both of Compass’ linear classi�ers performed very well.
Especially, the combination features can improve the model.

From the previous analysis on LDA model, the vocabulary of
high frequency words in political text is obviously di�erent with
other topics. Here we can also a�ribute this high accuracy to
the presence of special vocabulary that is present in the political
tweets. Furthermore, we can demonstrate that this binary classi-
�ers can learn some politic-related features other than keywords.
When training the models, we remove all keywords from the tweets
which are labeled as political ones. As the result shown in Table
3, the resulting models without keywords performed as well as
the previous models. From this observation, it demonstrates that
Compass’ binary political classi�cation model can predict well for
new political tweets which does not contain any political keywords
that were previously identi�ed.

Accuracy Precision Recall F1-Score
POLM1 + unigram 0.930 0.948 0.906 0.927
POLM2 + unigram 0.927 0.944 0.903 0.923

POLM1 + (uni + bi)-gram 0.933 0.951 0.910 0.930
POLM2 + (uni + bi)-gram 0.931 0.948 0.908 0.927
Table 2: E�ectiveness of Political vs Non-Political classi�cation.

4.1.2 Democratic vs Republican tweet classification. As described
in the previous section, we collected around 1.5 million political
tweets based on democratic and republican keywords. Since, it
is not feasible to keep updating this list of keywords, Compass

Accuracy Precision Recall F1-Score
POLM1 + (uni +
bi)-gram +t�df 0.934 0.9494 0.914 0.931

POLM2 + (uni +
bi)-gram + t�df 0.932 0.9487 0.910 0.929

Table 3: POLM1-2 without political keywords in the training data.
uses this dataset to create a machine learning classi�er that could
generalize to new tweets that might not contain these keywords as
described in Section 3.2. In order to make the ML model to not just
remember the keyword that caused the label to be democratic or
republican, we followed the below two approaches.

A0: No keywords: We removed all the keywords from the dataset
and trained the models to make sure that the model generalize to
tweets without the keywords.

A1: Keeping 2 keywords: We kept only two keywords, i.e Trump
and Hillary, in the model vocabulary to see how these two words
impact the performance.

A model under each approach is then developed based on either
SVM or LR following the discussion in Section 3.2. �ese variations
are denoted as PARTYM1 and PARTYM2 respectively (where PAR-
TYM stands for Party Model). �e results are shown in Table 4.

Accuracy Precision Recall F1-Score
PARTYM1 + A0 0.734 0.733 0.653 0.690
PARTYM2 + A0 0.741 0.756 0.634 0.690
PARTYM1 + A1 0.886 0.853 0.905 0.878
PARTYM2 + A1 0.889 0.844 0.927 0.884

Table 4: Performance for Democratic vs Republican classi�cation.

Manual labeled tweets. We further collected 412 tweets that
were manually labeled using a crowdsourcing module we built for
Compass, and evaluated our models on this dataset to ensure the
models are learning generalizable pa�erns. Table 5 has clearly vali-
dated and demonstrated the e�ectiveness of our models inCompass.

Accuracy Precision Recall F1-Score
PARTYM1 + A0 0.704 0.711 0.630 0.668
PARTYM2 + A0 0.672 0.674 0.595 0.632
PARTYM1 + A1 0.888 0.878 0.887 0.883
PARTYM2 + A1 0.888 0.867 0.902 0.884

Table 5: Performance for Democratic vs Republican classi�cation
on manual labeled tweets (through crowdsourcing).

4.2 Sentiment analysis
We used the 1.6 million tweets from the Stanford Twi�er Sentiment
(STS) corpus to train Compass’ sentiment classi�ers as shown in
Section 3.3 and reported the scores on the manually labeled tweets.
Compass’ sentiment model (SENT) can be instantiated with di�er-
ent classi�ers as discussed in Section 3.3 and we have tested the
following models: SENT1: SVM based, SENT2: LR based, SENT3:
MNB based (Multinomial Naive Bayes), SENT4: LSTM based as
detailed in Section 3.3.1, and SENT5: FastText based as detailed in
Section 3.3.2. We report the scores of these models on the dataset
in Table 6.

SENT5 based on FastText is our best performing model with an
accuracy of 84.4% on the test set. While it is possible to get accuracy
above 95% if we include emoticons data, we removed emoticons
during preprocessing to make sure the model learns from the text
and not just memorizing emoticons.

http://www.estorm.org


Method Accuracy
SENT1 + unigram 0.819
SENT2 + unigram 0.813
SENT3 + unigram 0.813

SENT1 + (uni + bi)-gram 0.808
SENT2 + (uni + bi)-gram 0.827
SENT3 + (uni + bi)-gram 0.825

SENT4 0.828
SENT5 0.844

Table 6: Comparison of models for sentiment analysis.
4.3 Bursty Event Detection
Our bursty model has made successful early detection of signi�cant
events throughout the election season. We compared our results
with the original events happened [5]. An event is bursty when its
bursty score is more than 1. Table 7 lists event dates, bursty score
and keywords related to events. �e measured parameters br+, br−,
bd+, bd− are bursty scores for republican positive tweets, republican
negative tweets, democrats positive tweets and democrats negative
tweets respectively. Due to space constraint, we present only a
sample of events as result. �e bursty score from Table 7 suggests
that our system successfully detected these events and keywords.
It also shows that cumulatively there is more surge of Republican
tweets than the Democrats.

Date Keywords br+ br− bd+ bd−
Event Description

19th
Oct

debatenight, debate
Trump, answer the
question, power transfer

11.8 8.3 5.6 7.4
Flash Poll Trump Wins Final Presidential
Debate

12th
Oct

sexual assault, sexual
predator, grabbing,
dressing rooms

2.2 2 1.8 1.5
Women Accuse Trump of inappropriately
touching them

9th
Oct

debate tonight, jumping
ship, tape

15.8 10.0 5.9 7.7
Trump and Clinton face o� second presi-
dential debate

7th
Oct

Women, sexual assault,
Respect, abuse, hated

3.4 4.8 1.6 2.02
Tape leaks showing Trump talking about
groping women

4th
Oct

Pence, Kaine, crazy sys-
tem, Poor Black, tax re-
turns

4.0 2.6 2.2 2.7
Kaine and Pence face o� in vice presidential
debate

28th
Sep

Clinton, answer ques-
tions, FBI, won the de-
bate

2.3 1.9 1.9 1.72
Clinton slams Trump in blistering presi-
dential debate

10th
Sep

BasketOfDeplorables,
Trump supporters,
voters

1.72 1.3 1.3 1.7
Clinton called out for Trump supporter de-
plorable

29th
Aug

Huma Abedin, Separate,
Joe, Breitbart

1.85 1.4 0.7 0.8
Clinton aide Abedin separates from Weiner

25th
Jul

DNC convention, Demo-
cratic, Hillary, Michelle,
emails

1.3 1.1 2.3 2.0
Democratic National Convention Philadel-
phia

21th
Jul

Make America Great,
trumps speech, support-
ers, jobs

2.2 1.1 2.0 2.3
Trump accepts Republican presidential
nomination

18th
Jul

GOP convention,
Trump, RNC, RNC in
CLE

2.5 1.4 1.1 0.97
Republican National Convention in Cleve-
land

Table 7: Sample of bursty events detected with burst scores.

4.4 Spatio-temporal sentiment analysis
We compared the actual results of the election with the spatio-
temporal sentiment maps produced by Compass. Figures 8 and 9
show how Compass’ sentiment map matches to the election result
to an extent. �ese sentiment maps are based on tweets from 21st
July (Republican Convention) to 20th October (Final Presidential
Debate). Note that we received predominantly less tweets from

(a) Compass’ sentiment analytics. (b) Actual election result.

Figure 8: Results from the state of Florida.

(a) Compass’ sentiment analytics. (b) Actual election result.

Figure 9: Results from the state of California.

non-urban areas which hinders Compass’ sentiment analytics per-
formance. �ere are counties from North Dakota, South Dakota
, Montana, Nebraska, Kansas for which we received very li�le or
no tweets. �e sentiment map does suggest popularity but does
not guarantee an actual win due to the US Electoral College voting
process. Various other last-minute factors have also in�uenced the
2016 election result.

5 CONCLUSION
Twi�er is still predominant among younger generations [34, 36].
Hence it re�ects the voice of the youth generation mostly. It is not
possible to get a complete picture until Twi�er user becomes pop-
ular among all generation. Exit polls indicates former generation
and non-graduate leans toward republican party and their percent-
age is statistically signi�cant [40]. Beyond election, Compass is
a useful and generic end-to-end framework for spatio-temporal
sentiment analysis over any topic of interest. �e framework can
be easily extended with pluggable features like bursty event detec-
tion. Our ongoing and future work include adding more statistical
tools and the ability to incrementally update various models within
Compass. To address the multilingual solution on sentiment analy-
sis Compass’s default sentiment model can be replaced with other
language say, French sentiment classi�cation model to achieve the
purpose. We are thankful to the reviewers for bringing this into
our notice. Compass will be released as an open source project on
Github.
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