
Qualifier Exam for Debjyoti Paul

Problem 1

Social media data is enormous, but semi-private. List relevant social media data sources, and explain what is
known about their sizes (in terms of storage space, and number of records), including both what is (probably)
privately controlled by companies, and what is available for su�ciently-motivated and -resourced academic
researchers.

Explain the state-of-the-art (with references to research papers) for scraping such semi-publicly accessible
data sets, and what are the largest bottlenecks for such tasks.

Predict (using a machine learning / data mining techniques on the data above) what the total number of
social media records available to researchers will be in 2022.
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OVERVIEW
�e term Social Media gained widespread a�ention with the advent
of Web 2.0 in the �rst decade of 20th century [14]. Web 2.0 is also
known as participative or social web that emphasize on user interac-
tion and user generated content encouraging participatory culture.
Before we jump into more details of social media, it would be wiser
to de�ne it. �e dynamic changes and continuous development of
social media services makes it harder to de�ne them, however most
of the research work could be summarized it as follows.

De�nition 1 (Social Media). Social media is an interactive com-
puter mediated technological platform that facilitates the creation
and sharing of information, ideas, career interests and other forms
of expression via virtual communities and networks [15].

In contrast to the traditional mediawhich operates under a mono-
logic transmission model i.e. one source to many receivers, such
as a television, newspaper or a radio station which broadcasts the
same programs to an entire city; social media are dialogic trans-
mission system which brings interaction, usability and a notion of
individual entity in the digital world.

1 PART A
Social Media Data in Numbers
Marketing and social media experts broadly agree to classify social
media with respect to media type and its usage i.e blogs, social
networks, private messaging, microblogs, photo sharing, video shar-
ing, professional networks, enterprise social networks, forums, prod-
ucts/services review, social bookmarking, social gaming, collaborative
projects and virtual worlds [1]. We now present a list of relevant
social media platforms according to the classi�cation stated in Table
1.

Table 1: List of Relevant Social Media
Category Social media sites with link
Social Networks Facebook, Snapchat, WeChat, �ora
Private Messaging Messenger, Whatsapp, QQ, WeChat, Skype
Microblogs Twi�er, Sina Weibo, Tumblr
Photo Sharing Instagram, Photobucket, Flickr
Video Sharing Youtube, Vimeo, Dailymotion
Professional Networks LinkedIn, AngelList, Meetup
Enterprise Social Networks Workday
Blogs Wordpress, Medium, Bu�er Blog
Forums Reddit, Hacker News, �ora
Products/Services Review Yelp, Foursquare, Google Places
Social Bookmarking Pinterest, Digg, Stumble Upon Mix
Social Gaming Pokemon Go, IGN, Gamespot [20]
Collaborative Projects Slack, Invision, Trello, Github, Bitbucket
Social Gaming Friendster

University of Utah, Salt Lake City, USA.

Table 2: Socialmedia sites and number of users (inmillions).
Years

Category Site 2013 2014 2015 2016 2017 2018 Type
Social
Networks

Facebook 1228 1393 1591 1860 2129 2271 Total
WeChat 355 500 697 889 989 1082 Total

Microblogs
Twi�er 241 284 305 318 330 332 Active
Weibo 140 175 237 310 340 392 Active
Tumblr 175 – – – 460 550 Total

Photo
Sharing

Instagram 150 300 460 600 870 1000 Active
Snapchat 33 100 180 301 – 400 Total

Video Youtube 700 1100 1431 1618 1767 1900 Active
Professional LinkedIn 277 347 414 467 530 576 Total

Services
Yelp 96 135 150 158 170 178 Active
Foursquare 33 30 50 – – 55 Total
Ridesharing – – 208 272 338 400 Active

Bookmarking Pinterest – – 110 160 220 250 Total

Table 3: Social media sites and media units created per day
(in millions).

Years
Category Site 2013 2014 2015 2016 2017 2018 Unit
Social Facebook 3600 – – 4320 – – posts

Microblogs Twi�er 245 399 500 – 657 682 tweets
Tumblr 120∗ 205∗ 270∗ 315∗ 380∗ 448∗ total blogs∗

Photo
Sharing

Instagram 5 31 – – – 67 photos
Snapchat – – – – 760 3000 photos

Video Youtube 69,120† 103,680† 432,000† 576,000† 720,000† – hours video †

Services Yelp 40‡ 55‡ 75‡ 95‡ 135‡ 171‡ total reviews‡
Foursquare 33 – – – – 12000§ total checkins§

Bookmarking Pinterest – 5 13 – – – pins

�e popularity of a social media site is primarily determined by
the total number of users or monthly active users. Table 2 presents
the facts about social media sites user base which gives some sense
of its popularity [7, 8, 18, 21]. �e a�ribute type with values (a)
Total (b) Active represents whether the statistic is of total users or
active monthly users respectively.

Other than the social media sites mentioned in Table 2 there
are some signi�cant sites where only the current user statistics are
available. For example Flickr, the photo sharing platform has 90
million users. �ora, a question answer social platform has 300
million users worldwide. Reddit, a social forum has 330 million
active users.

Number of users is not just an important parameter to measure
the popularity of a social media site but also to estimate the amount
of data storage it maintains. Another feature that will help us
to estimate data storage is the amount of media units (e.g. posts,
photos, microblogs, videos etc.) ingested per day. Table 3 presents
all the statistics of the relevant social media from open internet
[7, 8, 21, 24]. �e statistics for social media sites missing in Table
3 but mentioned in Table 2 are almost impossible to �nd in open
internet.

Social Media Storage Estimate:
Social media sites seldom reveals the amount of data they store or
ingest on a daily basis. Also the ever growing social media makes

1

https://facebook.com
https://www.snapchat.com/
https://www.wechat.com/en/
https://quora.com
https://messenger.com
https://whatsapp.com
http://www.imqq.com/
https://www.wechat.com/en/
https://www.skype.com
https://twitter.com
http://english.sina.com/weibo/
https://tumblr.com
https://instagram.com
http://www.photobucket.com/
https://flickr.com
https://www.youtube.com/
https://vimeo.com/
https://www.dailymotion.com/us
https://linkedin.com
https://angel.co/
http://www.meetup.com/
https://www.workday.com/en-us/homepage.html
https://wordpress.com
https://medium.com
https://buffer.com/
https://reddit.com
https://news.ycombinator.com
https://quora.com
https://yelp.com
https://fourquare.com
https://places.google.com
https://www.pinterest.com
https://digg.com
https://mix.com/
https://www.pokemongo.com/en-us/
https://www.ign.com/
https://www.gamespot.com/
https://slack.com
https://www.invisionapp.com/
https://trello.com
https://github.com
https://bitbucket.org/
http://www.friendster.com/index.html


University of Utah, , Salt Lake City, USA. Debjyoti Paul

Figure 1: A typical breakdown of energy usage among com-
ponents in data center [12].
it hard to estimate their storage capacity. I present few methods in
the following section to estimate the social media storage.
1. Storage space estimate frommedia units: �ismethodworks
for all the social media sites mentioned in Table 3 where the ap-
proximate storage space required by a media unit is known.

Youtube: Let us take an example of a Youtube video data. From
Table 3, we �nd that in the year 2017 users uploaded 720,000 hours
of video on Youtube per day. First, assuming the fact that Youtube
fairly stores most of the videos in 1080p and also stores them in
multiple resolution such as 240p, 360p, 720p and format e.g. Webm,
�v, mp4, 3gp, mp3. We can determine the amount of storage space
needed for a 1 minute video [13].

27.71 MB (Webm) + 17.00 MB (�v) + 554.43 KB (3gp)
+ 45.80 MB (mp4) + 2.81 MB (mp3)
= 93.8614355 MB

(1)

From the above Equation 1, we �nd that 720, 000×60×93.8614355 ≈
4.055 petabytes (PB) of storage space is required by Youtube ev-
eryday. We can also calculate the total amount of storage space
ingested during the period of 2013 to 2017 from Table 3 by utilizing
area under the curve method with interpolation. �e above method
reckons 3096.17 PB or 3.096 exabytes (EB) of storage. Considering
videos before 2013 and new 4K video which takes more space, it
can be easily assumed that Youtube uses 10-15 EB of storage space.

Twi�er: Similar to the method above, we can �nd the space
required to store a tweet. A tweet is stored in Twi�er as UTF-8
format. �is takes 140 characters tweets at most 560 bytes of space.
However the metadata a�ached with a tweet is much more than the
tweet itself. I personally did a random sample experiment of 100K
tweets store in our databases to �nd the average storage space for
tweet JSON object obtained from streaming API. I found that one
JSON tweet object takes 3247 bytes of space in average. 682 million
tweets per day will require around 2.2145 terabytes of data per day.
Using the interpolation method for area under the curve, we can
�nd that Twi�er uses 3.13 petabyte of space for storing the tweet
alone. It is also worth noting that 42% of tweets contains images
[23]. If we assume the average image size be 100 KB then we will
see (100 ∗ 1024)/3247 ∗ 42% ≈ 13.2 times increase in storage space
requirement.
2. Storage space estimate from data center power usage: �is
section presents an approximate method to estimate space capac-
ity of large social media companies like Facebook and Google. A
typical breakdown of energy consumption by data center is given

in Figure 1. �e largest energy consuming component is cooling
infrastructure with 50% of total energy. Rest of the energy is used
by power conversion, lighting, network and server components
[6, 12]. Facebook data centers use e�cient data center architec-
ture and hardware tweaks saves 8-12% of energy spent in cooling,
13-25% in power conversion, 10% in motherboard [11]. �at im-
plies at most 11% more e�cient than typical data centers. Hence,
it can be claimed that Facebook servers use 37% of energy. Con-
sidering Facebook’s 138 MW Altoona data center equipped with
200 Wa�s servers each with 6 × 4 TB of HDD as used in their ex-
periment for [11]. Assuming the data-center is running at peak
energy (138 × 0.37 × 24)/200 = 6127200 TB = 6.1272 exabytes (EB).
Taking all the data centers in consideration and diving them with
replication factor we can estimate the storage capacity of Facebook.
�e analysis provided above supports news Facebook Builds Exabyte
Data Centers for Cold Storage in 2013 [5].

Social Media Data for Researchers:
Regardless of the vast data in social media sites, the dataset available
for researchers in public domain is very very limited. Also these
datasets size are miniscule in comparison to what we mean by
bigdata. �e only exception is Twi�er. Twi�er provides 1̃% of
sample tweets through its streaming API. By utilizing multiple
resources and some other APIs such as keyword search researchers
can obtain more than 1% sample data. Also it is noteworthy to
note that researchers looking for geotagged data faces a greater
challenge as only 0.85% of tweets in Twi�er are geotagged [19]. A
study on the sample tweets and original stream (�rehose) reveals
that the research on sample and original can di�er unless proper
coverage is taken care of during data collection strategy [16]. From
the previous analysis and checking our twi�er streaming collection,
we can estimate that 1̃% sample collects 25-30 GB of uncompressed
data daily.

Facebook has tightened the security and restricted access to
many of its data for public research a�er Cambridge Analytical
Scandal [4, 10]. However, Facebook launched an initiative to make
a dataset available to “�e Social Science Research Council” for as-
sessment on impact of social data on elections [9]. �at means only
a�liated researchers with certain agencies will be able to access
Facebook’s data. I believe we will continue to see a restricted access
behavior from similar social media sites in future which can a�ect
public researchers.

To sum up, I present some of the most relevant social media
dataset available for public research in Table 4. From Table 4, it
is clear that there is no relationship between the amount of data
social media sites possesses and the data available for researchers
in public domain.

Many social media sites expose APIs for developers to access data.
�e free APIs of all the relevant social media sides are very restric-
tive. For example, facebook allows 200 API requests per hours/user.
Instagram earlier had 5000 requests/hour which has been reduced
to 200 request/hour. Geolocation services like foursquare 500 re-
quests/hour on premium API end points. Hence, it is clear that
the availability of social media data in public domain is not only
subjected to e�orts we invest in collecting it but also restrictive

2



Social Media Data and its availability in Research University of Utah, , Salt Lake City, USA.

Table 4: Most relevant social media dataset.
Site Dataset Size Link

Network Repository

Frienster 8 GB link
Twi�er (1) 6 GB link
Twi�er (2) 6 GB link
Twi�er (3) 960 MB link
Orkut (1) 388 MB link
Orkut (2) 422 MB link
Sina Weibo 960 MB link

Stanford SNAP

Facebook (ego) 4,039 nodes link
Google Plus 107,614 nodes link
Twi�er Social 81,306 nodes link
Expinion 75,879 nodes link
Youtube 1,134,890 nodes link
Amazon Product 334,863 nodes link
Reddit 132,308 submissions link
Flickr 2,316,948 images link
BrightKite (Location) 58,228 Nodes link
Gowalla (Location) 196,591 Nodes link
Movies 196,591 Nodes link

Social Computing ASU

Youtube (1) 1,138,499 nodes link
Youtube (2) 15088 nodes link
Last FM 108,493 nodes link
Twi�er 11,316,811 tweets link
Flickr 80,513 nodes link
Foursquare 106,218 nodes link
Digg 116,893 nodes link
Delicious 103,144 nodes link

Sentiment 140 Twi�er Sentiment 160,000 tweets link
Reddit Reddit 1.7 billion comments link
Yahoo Flickr 100 million images link

Awesome Data Github Google Scholar Unknown link
Indie Map Unknown link

policies from companies. We will revisit about scraping challenges
in the next section.

2 PART B.
Scraping Social Media:
Social media data is broadly divided into [3] :
1. Historic datasets: Previously accumulated and stored social/news,
�nancial and economic data.
2. Realtime feeds: Live data feeds from streamed social media, news
services, �nancial exchanges, telecom services, GPS devices and
speech.

Historical datasets are relatively easy to collect than real-time
feeds because of API limitation and limitation of scraping via crawl-
ing webpages. Social media data is mainly collected via two pro-
cedure API based or web crawling based approach. API crawling
methods are easy to maintain and modi�able. Web crawling based
approach can extract more information which might not be avail-
able via APIs. Also web crawling can avoid API rate limit and can
crawl more data. But it needs a data cleaning procedure and a high
maintenance because the web interface can change quickly which
would result in a change of code and crawling procedures.

Open source projects on API libraries are available on Github and
other collaborative platforms that enables researchers to collect data
e.g. tweepy for Twi�er, pyFacebook, python-�ickr, foursquare-api,
uberpy, python-vimeo, youtube-api etc. (all available in Github.) A
comprehensive list of api wrappers can be obtained from here [2].

Due to the imposed restriction of APIs, crawling technolgies
have evolved rapidly. Few state-of-the-art crawling libraries and
utilities are scrapy 1, beatifulSoup4 2, selenium 3, Graphene 4.

Di�culties in Scraping:
In this section, we present a comprehensive list of the challenges
researchers face while scraping social media data.

Lack of free APIs: Many social media sites does not expose rele-
vant APIs for free. �ey are mostly paid APIs and are costly.

API call limit: API call limit is the most discouraging element
for scraping social media data. Sometimes they can even show an
erratic behavior even if the scraper has not reached the documented
rate limit e.g. foursquare APIs.

Javascript enabled data: Researchers resorting to web crawling
face this challenge when the data is fetched via javascript calls and
simple web crawling will not work. �is kind of scenario needs
expertise and technologies. Using libraries like scrapy with plugin
splash (scriptable browser) 5 is the only best method known to
researchers. But it slows down the scraping process.

IP block: Web crawling o�en result in IP block. Only a well
resourced researcher can avoid it by charging IP addresses o�en
through proxy services. But sometimes social media sites can even
detect proxies and limit access.

Legal Terms and Conditions: Web crawling sometimes violate
the legal terms and conditions from social media sites. Even if a
researcher gets the data by crawling he/she might not be able to
publish the data or share with other researchers.

Missing link metadata: It is o�en found that the data exposed
either in API or in Webpages miss link metadata. Link metadata
are information like followers which reduce usability of such data.

3 PART C.
Predicting future:
As mentioned in Section 1 that there is no true evident relation
between the amount of social media data available with companies
and data available for public research; except for Twi�er. Hence,
we will try to predict how much social media data will be available
in 2022 within the Twi�er. Also the fact that I have limited amount
of information from Table 2 and Table 3, it will be wise to start with
a simple forecasting methods. Also it is very common for extremely
simple methods like forecast with historical average to outperform
more complex methods [22]. �is statement is even more likely
true for short time series.

To start with the basic forecasting model we might consider
historical mean model which assumes that the time series consists
of independently and identically distributed (“i.i.d.”) values, as if
each observation is randomly drawn from the same population.
Under this assumption, the next value should be predicted to be

1github.com/scrapy/scrapy
2github.com/il-vladislav/BeautifulSoup4
3pypi.org/project/selenium/
4graphene-python.org/
5github.com/scrapy-plugins/scrapy-splash
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(a) Moving Average with window 5. (b) Weighted Moving Average with window 3
(0.5, 0.3, 0.2).

(c) Exponential Moving Average with α = 0.9.

Figure 2: Predicting tweets per day from 2019-2022.

(a) Moving Average with window 5. (b) Weighted Moving Average with window 3
(0.5, 0.3, 0.2).

(c) Exponential Moving Average with α = 0.9.

Figure 3: Predicting Facebook monthly average users from 2019-2022.

(a) Moving Average with window 5. (b) Weighted Moving Average with window 4
(0.5, 0.35, 0.05,0.05).

(c) Exponential Moving Average with α = 1.0.

Figure 4: Predicting Youtube video upload hours from 2019-2022.

equal to the historical sample mean if the goal is to minimize mean
squared error. I tried a bunch of experiment withmean model and it
appeared to be working well with relatively moderate mean squared
error.

I avoided linear trend model as it is not a very robust model for
time-series forecasting [17]. Since I have the priori knowledge of
the series that has a positive trend or zero trend I can use a moving
average model that puts more weight on the most recent values
than to use a linear trend model with a not very signi�cant trend
estimate. With this notion I tried the moving average model to
forecast the tweets per day metric for 2022. I tried more forecasting
methods with weighted moving average and exponential moving

average model . Figure 2 presents all the forecasts for tweets per
day metric till 2022 6.

Complex models like ARMA (AutoRegressive Moving Average)
and ARIMA (AutoRegressive Integrated Moving Average) models did
not do well (validating with small train test data).

From the prediction in Figure 2, we �nd that twi�er will generate
around 730 million tweets every day in average. �at is almost 2.4
terabytes of tweet data without media.

Similar forecasting applied on Facebook monthly active users in
Figure 3 reveals that almost 3000 million people will be active in

6github.com/debjyoti385/MovingAverageForecasting
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Facebook by the end of 2022. From Youtube’s hourly video upload
data, it is predicted that in 2022 users will upload 1.4 million hours
of video everyday 4.
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Problem 2

Deep reinforcement learning is a useful technique for realizing goal-oriented algorithms. It combines the idea
of reinforcement algorithm with deep learning and has been shown to be very e↵ective in many di↵erent
application scenarios. Answer the following questions:

1) Please provide a detailed review of deep reinforcement learning.

2) How would you apply deep reinforcement learning for tuning the performance of a DB system? (i.e., like
what OtterTune does, but using deep reinforcement learning). Please outline your problem formulation,
overview of your approach, and a sketch analysis.
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INTRODUCTION
Reinforcement learning (RL) is the area of machine learning that
deals with sequential decision making. Sequential decision-making
is a task of deciding, the sequence of actions to perform in an un-
certain environment in order to achieve some goals. Sequential
decision-making tasks covers a wide range of possible applications
with the potential to impact many domains, such as robotics, health-
care, smart grids, �nance, self-driving cars, and many more.

Inspired by behavioral psychology (e.g. Su�on [21]) reinforce-
ment learning (RL) proposes a formal framework to this problem.
�e main idea is that an arti�cial agent may learn by interacting
with its environment, similarly to a biological agent. I will dive
more into the details of how a general RL problem is formally repre-
sented and what are the key components involved in the framework
in Section 1.

1 PART A
In reinforcement learning there is no supervisor but a reward signal
to guide the learning process. Even the feedback is delayed and
not instantaneous which sets it as a di�erent paradigm from other
machine learning methods. In a sequential decision making pro-
cess an/the agent gets to pick an action at every time step which
tries to optimize the future cumulative reward signal. Traditional
Reinforcement Learning requires explicit design of state space and
action space, while the mapping from state space to action space is
learned [22]. �at makes the problem spaces and the possible states
in an environment very limited, only with fully observable state
of environment for agent. Neural networks enhances RL with the
capability to make the agent learn a state abstraction and a policy
approximation directly from its input data in a partially observable
environment. Deep RL is the fruitful outcome of this a�empt of RL
enhancement.

1.1 Formal RL Framework:
�e general RL problem is formalized as a discrete time stochastic
control process where an agent interacts with its environment in
the following way: the agent starts, in a given state within its
environment s0 ∈ S, by gathering an initial observation ω0 ∈ Ω.
At each time step t , the agent has to take an action at ∈ A. As
illustrated in Figure 1 it follows three consequences: (i) the agent
obtains a reward rt ∈ R, (ii) the state transitions to st+1 ∈ S, and
(iii) the agent obtains an observation ωt+1 ∈ Ω. �is control se�ing
was �rst proposed by [3] and later extended to learning by Barto
[2]. �e goal of RL is to select actions to maximise total future reward.

De�nition 1. Reward: A reward rt is a scalar feedback signal that
indicates how well agent is doing at step t .

University of Utah, Salt Lake City, USA.

Figure 1: Agent-environment interaction in RL.
An example of reward in the case of �ying toy robot helicopters

are : (a) +ve reward for following desired trajectory, (b) ��ve
reward for crashing.

De�nition 2. History: �e historyHt is the sequence of obser-
vations, actions, rewards, i.e. all observable variables up to time t .
Mathematically,Ht = ω1, r1,a1, . . . ,at−1,ωt , rt .

Formally, state st ∈ S is a function of the historyHt .

st = f (Ht )

Environment and agent both can have their own state which we
de�ne as set and sat respectively. �e environment state is usually
not visible to the agent.

In a fully observable system, the agent directly observes envi-
ronment state i.e. ωt = sat = s

e
t . Formally this is called as Markov

Decision Process (MDP). �e Markov property means that the fu-
ture of the process only depends on the current observation and
the agent has no interest in looking at the full history.
Markov Decision Process (MDP):
An MDP is a 5-tuple (S,A,T ,R,γ ) where

S is the state space,
A is the action space,
T : S × A × S → [0, 1] is the transition function (set of
conditional transition probabilities between states),
R: S × A × S → R is the reward function, where R is a
continuous set of possible rewards in a range Rmax ∈ R

+

(e.g., [0,Rmax ]),
γ ∈ [0, 1) is the discount factor.

However, in the real world not many systems are fully observable,
an agent indirectly observes the environment without knowing it’s
internal information state. In this scenario sat , s

e
t .

Formally this is a partially observable Markov decision process
(POMDP) illustrated in Figure 2.

Partially Observable Markov Decision Process (POMDP): A
POMDP is a 7-tuple (S,A,T ,R,Ω,O,γ ) where

S is the state space,
A is the action space,
T : S × A × S → [0, 1] is the transition function (set of
conditional transition probabilities between states),

1
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Figure 2: Partial Observed Markov Decision Process
(POMDP).

R: S × A × S → R is the reward function, where R is a
continuous set of possible rewards in a range Rmax ∈ R

+

(e.g., [0,Rmax ]),
Ω is a �nite set of observations 1, ...,NΩ ,
O : S × Ω → [0, 1] is a set of conditional observation
probabilities,
γ ∈ [0, 1) is the discount factor.

In a POMDP agent must construct its own state representation
sat . For example,
(i) Complete history: sat = Ht .
(ii) Beliefs of environment state: sat = P[s

e
t = s1], . . . ,P[set =

sn] where sk represents a state in environment.
(iii) Recurrent Neural Network (RNN): sat = σ (s

a
t−1Ws +ωtWo )

whereWs andWo represents weight vectors and σ some non linear
function. [11, 12, 23].

�is RNN approach to solving POMDPs is related to other prob-
lems using dynamical systems and state space models, where the
true state can only be estimated [5].

1.2 RL Agent Components:
So far, we have introduced the key formalism used in RL, the MDP
and the POMDP. Now I will talk about what is inside an RL agent
and the components it uses for learning. An RL agent may include
one or more of the following component for learning.
Value functions: Value function a�empts to measure goodness/badness
of each state and/or action. In other words, value function methods
are based on estimating the value (expected return) of being in
a given state i.e. future reward. �e state-value function Vπ (s )
is the expected return when starting in state s and following π
henceforth:

Vπ (s ) = Eπ [Rt + γRt+1 + γ
2Rt+2 + . . . |st = s]

where γ ∈ [0, 1] is a discount parameter, that governs the future
sightedness of the model.
Policy Search: A policy is the agent’s behavior. It is a map from
state to action. Examples of some policies are:
(i) Deterministic Policy: �is is the simplest policy, here an action a
is mapped to a state s i.e. a = π (s ).
(ii) Stochastic Policy: A policy can be stochastic based on probability
of state observation, i.e. π (a |s ) = P[A = a |S = s].
(iii) Parameterized Policy: A parameterised policy πθ is chosen,
whose parameters are updated to maximise the expected return
E[R |θ ] using either gradient-based or gradient-free optimisation [7].

Figure 3: RL Agent Taxonomy.
Neural networks that encode policies have been successfully trained
using both gradient-free [6, 9, 15] and gradient based [13, 16, 24]
methods.
Model: A model tries to learn the behavior of the environment.
First, it tries to predict what the environment will do next, that
is predicting next state and is called Transitions (P). Secondly,
the model tries to predict the expected next reward and is called
Rewards model (R).

Pass ′ = P[S
′ = s ′ |S = s,A = a]

where s is the state prior state and s ′ is the resultant state on action
a.

Ras = E[r |S = s,A = a]

where s is the state prior state and r is the reward for next step on
action a.

1.3 RL Agent Taxonomy:
Model methods are optional in RL systems. In fact there are many
model free based methods applied for real world problems. To
understand a comprehensive taxonomies of categorizing RL Agent
we present it in Figure 3.

RL focus on learning without access to the underlying model
of the environment. However, interactions with the environment
could be used to learn value functions, policies, and also a model.
Model-free RL methods learn directly from interactions with the
environment, but model-based RL methods can simulate transitions
using the learned model, resulting in increased sample e�ciency
[1]. �is is particularly important in domains where each interac-
tion with the environment is expensive. However, learning a model
introduces extra complexities, and there is always the danger of
su�ering from model errors, which in turn a�ects the learned pol-
icy; a common but partial solution in this la�er scenario is to use
model predictive control, where planning is repeated a�er small
sequences of actions in the real environment [5]. Although deep
neural networks can potentially produce a very complex and rich
models [8, 18], sometimes simpler, more data e�cient methods are
preferable [10].

1.4 Deep Reinforcement Learning (DRL):
Traditional RL works was mainly on low dimensional problems (i.e.
few state space, limited actions etc.). Integration of deep neural
network with RL framework bolster the framework by converting
higher dimensional problems into low dimensional representations.
Initial DRL works was mainly involved on scaling up prior work

2
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Figure 4: Q-learning RL (above) and DQN (below) [17].
in RL to high dimensional problems. DRL can deal e�ciently with
the curse of dimensionality unlike tabular and traditional non-
parametric methods [4].

In DRL, deep neural network is trained to model/predict one or
more of (a) the optimal value functions V π (s ) (b) optimal policy
π (s ) (c) optimal quality function Q∗ (d) optimal actions A∗.

Many works on DRL is based on gradient based backpropagation
algorithm [13, 19, 20] which models the optimisation of the expected
return as the optimisation of a stochastic function.

�is stochastic function can have one or more models, policies
and value functions combined in various ways. Each individual
component might not directly optimise the expected reward but
can incorporate useful information to optimize reward as a whole.
For example, a DRL using a di�erentiable model and policy, it is
possible to forward propagate and backpropagate through entire
episodes; and policy component can learn the information over
the history. Both can be summarized with a value functions for
optimizing reward [13].

To present a concrete example of how a traditional RL network
is extended to a DRL, I will present a value-function-based DRL
algorithms with the DQN in Figure 4. Q-functions learns action-
value function. In a traditional RL problem, a Q-learning function
create and update a Q-table to �nd the maximum expected future
reward of an action, given a current state. �e model takes greyscale
images as state from the video game; with the input current state
Q-table returns with actions. It is a good strategy but it is not
scalable.

On the other hand, the DQN takes the state-a stack of greyscale
frames from the video game-and processes it with convolutional
and fully connected layers, with ReLU nonlinearities in between
each layer. At the �nal layer, the network outputs a discrete action,
which corresponds to one of the possible control inputs for the
game. Given the current state and chosen action, the game returns
a new score. �e DQN uses the reward-the di�erence between
the new score and the previous one-to learn from its decision.
More precisely, the reward is used to update its estimate of Q and
the error between its previous estimate and its new estimate is
backpropagated through the network.

1.5 Current Research Challenges:
To end with the short review on DRL, I present some of the research
challenges in Deep Reinforcement Learning process.

Exploration vs Exploitation: Online decision making involves a
fundamental choice (i) Exploitation or (ii) Exploration. Exploitation
refers to making the best decision with the current information

gathered by the agent. Whereas exploration involves a�empting
new action for more information. �is is also known as exploitation-
exploration dilemma. �e best long-term strategy may involve lot
of exploration and short term sacri�ces. On the other hand if the
agent has already found best strategy exploration, it may reduce
the rewards.

Transfer Learning: Transfer learning is about e�ciently using
previous knowledge from a source environment to achieve new
(slightly) di�erent tasks in a target environment. To achieve this,
agent must develop generalization capabilities such as (i) feature
selection (ii) removing asymptotic bias (iii) reduce over��ing and
function approximator (iv) Optimizing horizon (length of observa-
tions history involved in decision making process) etc.

Learning without explicit reward function: In reinforcement learn-
ing, the reward function de�nes the goals to be achieved by the
agent. Due to the complexity of the environments in practical ap-
plications, de�ning a reward function can turn out to be rather
complicated. Approaches like imitation learning (supervised learn-
ing) and inverse reinforcement learning where agent determines
possible reward functions given observations of optimal behavior,
are research challenges for the next decade.

2 PART B. SELF INSTRUCTING DATABASE:
2.1 Overview:
Any standard database has considerable large number of con�gura-
tion knobs. Databases needs to be tweaked with proper con�gura-
tion for running e�ciently with di�erent workloads and hardware
resources. Tweaking database con�guration knobs needs a great
level of expertise from database administrator (DBA) because opti-
mal con�guration varies with the type of workloads. Beside that,
even �nding optimal knob con�gurations might involve a trial
and error process for a DBA (which restricts the search spaces for
knobs). An auto-con�guring database system or self instructing
database is a desirable feature to demand from database companies.

Human database administrators rely on experience and intu-
ition to con�gure it. DRL process mimick same learning strategies
i.e. learn from mistakes and correctness to maximize future re-
wards. Keeping this in mind we can explore how DRL can provide
a solution to automatic database tuning.

2.2 Problem Formulation:
Given a workloadW (which is a serialized query pro�le DAG of
execution task), with a knobs se�ing C = {c1, c2, . . . , c |C | } a typical
database outputs a log of metricsM = {m1,m2,m3, . . . ,m |M | } as
shown in Figure 5. �e database keeps receiving workloads at some
discrete interval of time and it runs with some con�guration and
outputs a metric log, which is also called a discrete time stochastic
control process.

We can apply deep reinforcement learning to train a neural
network in taking over the database tuning process by optimizing
con�guration for observable database workload. Essentially, we
have to de�ne a RL problem environment consisting of the four
following components to perform the learning as shown in Figure
6:
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Figure 5: A typical database system.
1) Observable State: �is is also input to the neural network.

�is is typically the current workload in form of query charac-
teristics, for which the system should be optimised as well as the
current state of the con�guration. Figure 6 illustrates workloadWt
is mapped to observation/state ωt ∈ Ω or st ∈ S for time stamp t .
(Note: ωt = st in MPD)
(Note: �ese notations are de�ned in Section 1.1).

2) Actions: An action is a bounded set of con�guration Ct where
each knobs can have a range of permissible values. Changing the
size of a database bu�er is an example of action. Now we can
represent Ct → at ∈ A.

3) Reward: We map the metricMt to rewards rt ∈ R . Since re-
ward is a scalar function and metricMt is a set of values represent-
ing the goodness and badness of database execution on workload
Wt , we need to apply some function rt = f (Mt ) to keep it simple.
Later we will see an alternative approach where function f is not
needed with a multitask-agent DRL.

4)Hyperparameters forNeuralNetwork: �is includes prop-
erties of the neural network (e.g. number of hidden layers, number
of nodes per layer) as well as properties of the learning process like
the number of iterations.

Figure 6: RL Agent-Database Environment Interaction.

Training and Challenges:
With the high level components de�ned, now we will go through
the work�ow of learner. Assuming the neural network agent (NNA)
is con�gured with the required hyperparameters, the learning pro-
cess starts with time t = 0. First, a workloadWt = st is fed into
neural network agent (NNA). �en, the NNA explore action set A
to produce an action (con�guration) at = Ct . �e database environ-
ment on receiving action con�guration Ct executes workloadWt
and returns with metricsMt . Some function f : Mt → rt ∈ R
converts metric to scalar reward. �is process is repeated many

times and agents either explore action set or exploit learned opti-
mal action to predict next best con�guration. �e desired goal is to
optimize maximum cumulative positive rewards.

An intuitive solution for choosing function f :Mt → rt ∈ R is
through the following steps:

- negate all the metrics whose desired objective is to mini-
mize, such that we now optimize, for maximization.

- normalize each metricmi ∈ Mt with their satis�ed range
of operation.

- rewards is sum of normalized metrics.
To avoid the problem of choosing a function f , we can transform

the problem to a Multi-task Deep RL problem. Some hierarchical
RL techniques also decompose tasks into subtasks, these methods
then solve the subtasks in a locally optimal way and then global
optimality can be achieved by aggregating back together. Another
approach is to try Linear Temporal Logic speci�cation that enables
an interleaving of subtasks to support global optimization [14].
�ese techniques can help in avoiding selection of f by considering
a speci�c set of metrics and optimize actions for it.

Model based/Model-free Agent: Model-free and model based both
type of agent can be fruitful in this type of scenario. However model
based approach needs more e�ort in design. �e advantage of model
based approach is that it can learn strategies to trade-o� exploration
and exploitation to learn quickly. But it is non-arguably plausible to
choose gradient based methods because con�gurations knobs tend
to have convex properties. Also selecting RL agent components
such as value functions, policy functions, actor-critic or model is
subjected to further experimentation with various hyperparameters
(such as number of hidden layers, ReLU layers etc.).

Transfer Learning: It is essential for this type of system that
a learned agent adapt to a new environment or a new database.
Transfer learning is only possible when the agent can obtain gen-
eralization in learning procedure. When the quality of the dataset
increases, the risk of over��ing is lower and the learning algorithm
can trust more the maximum likelihood model by looking into
a larger policy class and less approximations. On the other hand,
when the quality of the dataset is low, the learning algorithm should
be cautious on being too con�dent about the maximum likelihood
model and should favor more robust policies. Hence, the sampling
technique to obtain a good coverage of sample space is important.

2.3 Conclusion:
In Section 2 I presented an overview of the DRL model for au-
tonomous or self-instructing databases. �e model proposed is
the starting point which can be extended as required for experi-
mentation. Challenges remaining have also been address in this
small review. A detailed deep dive with workload characteris-
tics/representation is needed independently for future work on
autonomous databases.
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Problem 3

1) Let’s say you now work at twitter and are part of a team that builds dashboards of geotagged tweets.
You’re able to monitor these for indicators of happiness, food, and physical activity. You’re also able to
build associations with various desirable and undesirable health conditions. BlueCross Blueshield comes to
you with a project: they want to use your predictive tools along with their own databases of individuals to
augment risk factor analysis with data from individual’s social media streams.

a) How would you go about building such a tool? What are the main technical and data challenges that
you foresee? b) A member of your team feels uncomfortable about doing this for the insurance company on
ethical grounds, and seeks to void the contract. What is your position on this and why?

2) Consider the same scenario above, but now instead of BlueCross BlueShield, it’s the Center for Medicare
and Medicaid Services (a federal government entity). Does your answer in b) above change?
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INTRODUCTION
Many research has revealed that analyzing tweets in volume can
measure di�erent population characteristics including public health
measures [2, 8, 13, 17, 21, 22]. Research analysis like correlating
in�uenza rates w.r.t geography (spatial) and time [23], state level
food and health behavior analysis [18], predicting heart disease
rate mortality rate based on twi�er information [8]; are motivating
examples to carry out such analysis for improving and building a
good public health environment. All these above adhoc analysis
inspire us to build a general system for comprehensive analysis. In
this work, I will present an overview of the architecture and the
desired features to build such system or tools.

1 PART A. SPATIO-TEMPORAL DATA
ANALYSIS SYSTEM :

A comprehensive system for spatio-temporal analysis requires the
following components which can be broadly categorized based on
their operations:

• Data Ingestion
- Data Collection Module

• Data Enrichment
- Data Cleaning Module
- Location Extraction Module

• AI/ML Models
- Tweet/Document Classi�cation Module
- Sentiment Analysis Module
- Image Classi�cation Module (optional)

• Data Storage
• Data Processing Pipeline
• Analytics Processing Engine

- Realtime Data Aggregation Support
- Spatio-temporal �ery Support

• Visualization
- Interactive Dashboard

In the following part I will throw some light on each component
and discuss about challenges that it might have.

1.1 Data Ingestion
Data Collection Module: Twi�er is the biggest social media data
source for researchers. Twi�er’s 1% sample data stream API is
the most common approach for data collection. Twi�er statistics
reveals that only 0.85% of tweets in the stream is geotagged [24]
which is signi�cantly lower. Utmost e�ort and care should be taken
to collect more geotagged data. Twi�er’s location based API should
be used for such purpose.
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Challenges: Collecting data from location based API or any other
keyword based search API are restrictive in nature with request
limit per hour. Evading this problem might be challenging with lim-
ited resources. Multiple number of data collection servers collecting
mutually exclusive geographical region can help to collect more
geotagged data. For some social media sites, it is almost necessary
to use proxy network to avoid IP block.

1.2 Data Enrichment:
Data Cleaning Module: Data collected from social media o�en
needs to be cleaned (e.g. tokenize, language �lter etc.) for process-
ing. �e common scenarios for cleaning operations are (i) �ltering
english tweets, (ii) removing emoticons (iii) keywords extraction etc.

Challenges: �ere are many good tools for data cleaning. �e
main concerns are (i) which library tools to use for desired result. (ii)
the library should have high processing throughput
Location Extraction Module As mentioned earlier that the per-
centage of geotagged tweets is not high. However, a lot of a�empt
has been made to predict the location of the tweet based on user
activity and history. Geotagging users is now a well studied prob-
lem and it has a median error of 6.38 km which might not be very
signi�cant for our analysis[5].

Challenges: Increasing need to collect more data about users. If
we are interested in home location of users then the above men-
tioned [5] technique is satisfactory. However, if we want the dy-
namic location as the users move or travel then it becomes a chal-
lenging problem.

1.3 AI/ML Models:
Tweets/Document Classi�cationModel: In order to distinguish
between relevant (e.g. health, food, disease etc.) and non rele-
vant tweets/documents we need a tweet classi�cation component.
Unsupervised methods like topic modeling with LDA [3], pLSA
[11] and phrase LDA [9] and modi�ed versions of them can help
in classi�cation problem. However, microblogs classi�cation for
targeted topic needs further a�ention. In our work [20] for Spatio-
temporal Sentiment Analysis for US Election, we used political and
non-political tweet classi�cation in a semi-supervised approach.
�e semi-supervised approach starts by creating training data for
classi�cation. Topic modeling act as a bootstrap method for creat-
ing training data that helps in learning tweet classi�cation through
context. �is semi-supervised approach proved to be more robust
[20].

Challenges: �e semi-supervised approach used in [20] have not
been used yet for classi�cation in health related topics. Previous
works like topic model for ailment [22] (e.g. examples of word and
topic relation is shown in Figure 1) are extension of topic model-
ing with LDA and specially designed for ailment tweet discovery.
Remodeling semi-supervised classi�cation for disease and health
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Figure 1: An example for topic model on ailment[22].
are yet to be experimented and might face challenges. For example
tweets like “I feel like I’m going to die of Bieber Fever, No Joke!”
and “Web design class gives me a huge headache everytime” both
tweets does not talk about health condition. Hence learning context
of words is a desirable approach.
Sentiment Analysis Model: From past decade opinion mining
on text data has been a popular research topic. Pang et. al. [19]
gives a comprehensive survey on incipient opinion mining research.
Twi�er sentiment analysis with machine learning approaches like
SVM [12], lexicon based [25], LDA [7, 14] and neural network [6, 26]
etc. Our work on “Spatio-temporal sentiment analysis on US Election”
used LSTM-RNN and FastText for achieving state-of-the-art result.

Challenges: To improve upon the existing state-of-the-art meth-
ods, we have to keep adopting and experiment new AI methods. Ex-
ploration will achieve more fruitful results if proper training/ground
truth datasets on sentiment are available in future. Also sentiment
analysis with AI is limited to only a few language. To widespread
the technology to di�erent languages, we need resources (datasets),
e�orts and experiments to achieve rewarding results.
Image Classi�cation Model: “A picture is worth thousand words”
is an English language-idiom that rightly characterize the scenario
for tweets [1]. Twi�er statistics reveals that 42% of tweets a�ach
images [27]. Integrating image analysis module will reveal more
information that is worth looking into. To the best of my knowledge,
we haven’t yet researched a lot on public health by integrating
twi�er images.

Challenges: Recent works on object detection from images will
be our starting point [10, 16]. We need to list the items we look out
in images and provide enough example of them in training sample
while training our model.

1.4 Data Storage:
Collected data enriched with information from ML/AI models are
stored in databases. Spatio-temporal properties of data demands
more a�ention with indexing. NoSQL key-value based databases
can store all the information while the spatial indexes store object
ids with location for accelerated access [4].

1.5 Data Processing Pipeline:
Creating the pipeline starting from data collection to data sink with
so many components needs expertise in data processing. In our
recent work AI Pro: Data Processing Pipeline for AI models 1 takes

1 https://www.cs.utah.edu/∼deb/aipro

care of se�ing up the pipeline for end users just by con�guration
(which is popularly known as code as con�guration). Researchers
opting for customized processing pipeline will be able to create it
with li�le or no e�ort.

Challenges: AI Pro processing pipeline needs to adapt new tech-
nologies and support them, this requires community collaboration.

1.6 Analytics Processing Engine:
RealtimeDataAggregation Support: Enriched information stored
in databases is ready to be analyzed by data scientist. Data sci-
entists �nds statistical signi�cant information by aggregating on
di�erent a�ributes which is termed as slicing and dicing in data
analytics world. Realtime operation of slicing and dicing with
spatio-temporal operation is hard to achieve. A work from our lab
by Li et. al (XDB) addresses this problem with online aggregation
[15]. �is work is vital to achieve realtime analytics support for
our system.

Challenges: Scaling up the processing power in realtime envi-
ronment is always a challenging task. �e works mentioned above
tries to solve the problem amicably. Sampling strategies on ag-
gregate data guides data scientist to quickly evaluate the informa-
tion/statistics vital for the analysis. It is essential that sampling
strategies are good enough for intended data to fetch the truthful
results. �at poses a challenge for the system.
Spatio-temporal �ery Support: As mentioned earlier in data
storage section that geotagged data needs special a�ention, it is
also true for query support. Spatial operations like distance range,
nearest neighbour requires special support and they are costly
toward resources. Another work from our lab Xie et al. integrated
“Spatial In-Memory Big data Analytics [29] has extended Apache
Spark SQL to support spatial queries by introducing native indexing
support over RDDs [30].

1.7 Visualization:
interactive Dashboard: Interactive dashboard for online analysis
integrated with realtime processing APIs is a feature data scientist
would like to see. Filtering and selection from visualization will
make the system amiable and encouraging for user. Realtime dash-
board to �nd the rate of mentions of di�erent topics and other time-
series analysis might also be important for data scientist. STORM a
spatio-temporal project from InitialDLab supports similar interface
[4]. Interactive visualization and cohesive analysis might be able
to �nd a correlation among health, food and physical activity.

Challenges: Interactive dashboard needs to be integrated with
Analytics Processing API serve to fetch data with query. �e tools
like d3.js 2 can help in designing the visualization but it requires a
good skill and understanding of the subject.

1.8 Conclusion:
All the above mentioned components are useful and necessary for a
successful analytical system on spatio-temporal system. Our system
is generic in nature but can be extended with custom topic related
analysis module for special purposes. For example, spatio-temporal

2https://d3js.org/
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analysis from social media might be able to throw light on public
health and ailment for collective bene�t of the society.

2 PART B. ETHICAL CONCERNS:
Arti�cial intelligence is a boon only if we only use it for the bene�t
of mankind, same is true with all the technologies we use in our
life. Spatio-temporal health analysis as a cumulative measure for
public health is a boon for the society where government can know
the state of public health and act accordingly for the bene�t of the
state or country and its people. However if the same data is used
to target an individual person and gather data related to his/her
health with a targeted approach, it will not be welcomed by the
general public.Taking example, if the browser history is used to
know the health concern of an individual then it is highly unethical
and a dangerous proposition.

Here I will highlight some of the key areas of concerns in research
with Twi�er data:

Anonimity: Anonymity is a key consideration in research ethics,
particularly in qualitative research practices or when data sets are
shared outside of the original research team. With traditional forms
of research, it is generally straightforward to anonymize data so
that research participants cannot be identi�ed. Further problems
arise when data sets are exported to external coders and research
partners without anonymizing it [28].

Risk of harm: �e Association of Internet Researchers suggest
that a researcher’s responsibility towards his or her participants
increases with the increased risk of harm to those participants [28].
�is includes the risk of using the data to characterize user’s health
pro�le and using it against them.

Now take a hypothetical situation, say Bluecross BlueShield a
health insurance provider for public wants to know the health con-
cerns of any individual seeking insurance policy by analyzing their
tweets/ browser history (data collected from 3rd party source), so
that they can o�er customized pricing on the same health insur-
ance plan based on the analysis they have obtained from personal
information for monetary gain. Irrespective of its truthfulness of
the data source used here for such analysis makes a judgement on
an individual. �is information may harm his/her mental, physical,
�nancial health and it is highly unethical with detrimental conse-
quences. As an ethical researcher, I have issues in working under
such circumstances and in such scenarios.

Taking another hypothetical situation where a government fed-
eral agency say Center for Medicare and Medicaid Services is trying
to gauge public health. If the cumulative and aggregate metrics on
health and ailment is not targeting any individual but a collective
society it will be welcomed by the researchers and by me. An exam-
ple of such scenario; we know social media is very good at �rst hand
reporting of public concerns. If there is an outbreak of a disease in
a region then government can respond to the situation by sending
doctors and health services team to learn its extent, gather facts
and create awareness. Here spatio-temporal analysis just helped
to identify concerns of public health; but facts and �gures from
on ground health workers are mandatory to take any actions like
travel advisory and isolation procedures. Spatio-temporal analysis
act as a boon here.

However if the government agency also wants to use personal
information to gauge health and habits of an individual without
their consent then it is unethical and I would prefer not to be part
of this.
Conclusion: �e motivation or goal with ethical values of research
is a decisive factor for me to join irrespective of the a�liation of
research entity. Ethical decision-making is based on core character
values like trustworthiness, respect, responsibility, fairness, car-
ing, and good citizenship. Honoring ethical values in work is of
paramount importance to me.
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